首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If G is a graph with p vertices and at least one edge, we set φ (G) = m n max |f(u) ? f(v)|, where the maximum is taken over all edges uv and the minimum over all one-to-one mappings f : V(G) → {1, 2, …, p}: V(G) denotes the set of vertices of G.Pn will denote a path of length n whose vertices are integers 1, 2, …, n with i adjacent to j if and only if |i ? j| = 1. Pm × Pn will denote a graph whose vertices are elements of {1, 2, …, m} × {1, 2, …, n} and in which (i, j), (r, s) are adjacent whenever either i = r and |j ? s| = 1 or j = s and |i ? r| = 1.Theorem.If max(m, n) ? 2, thenφ(Pm × Pn) = min(m, n).  相似文献   

2.
We present a new condition on the degree sums of a graph that implies the existence of a long cycle. Let c(G) denote the length of a longest cycle in the graph G and let m be any positive integer. Suppose G is a 2-connected graph with vertices x1,…,xn and edge set E that satisfies the property that, for any two integers j and k with j < k, xjxk ? E, d(xi) ? j and d(xk) ? K - 1, we have (1) d(xi) + d(xk ? m if j + k ? n and (2) if j + k < n, either m ? n or d(xj) + d(xk) ? min(K + 1,m). Then c(G) ? min(m, n). This result unifies previous results of J.C. Bermond and M. Las Vergnas, respectively.  相似文献   

3.
Let G1, G2…, Gn be regular graphs and H be the Cartesian product of these graphs (H = G1 × G2 × … × Gn). The following will be proved: If the set {G1, G2…, Gn} has at leat one of the following properties: (*) for at leat one i ? {1, 2,…, n}, there exists a 1-factorization of Gi or (**) there exists at least two numbers i and j such that 1 ≤ i < jn and both the Graphs Gi and Gj contain at least one 1-factor, then there exists a 1-factorization of H. Further results: Let F be a cycle of length greater than three and let G be an arbitrary cubic graph. Then there exists a 1-factorization of the 5-regular graph H = F × G. The last result shows that neither (*) nor (**) is a necessary condition for the existence of a 1-factorization of a Cartesian product of regular graphs.  相似文献   

4.
5.
A tree is called starlike if it has exactly one vertex of degree greater than two. In [4] it was proved that two starlike treesG andH are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, letG be a simple graph of ordern with vertex setV(G)={1,2, …,n} and letH={H 1,H 2, ...H n } be a family of rooted graphs. According to [2], the rooted productG(H) is the graph obtained by identifying the root ofH i with thei-th vertex ofG. In particular, ifH is the family of the paths $P_{k_1 } , P_{k_2 } , ..., P_{k_n } $ with the rooted vertices of degree one, in this paper the corresponding graphG(H) is called the sunlike graph and is denoted byG(k 1,k 2, …,k n ). For any (x 1,x 2, …,x n ) ∈I * n , whereI *={0,1}, letG(x 1,x 2, …,x n ) be the subgraph ofG which is obtained by deleting the verticesi 1, i2, …,i j ∈ V(G) (0≤j≤n), provided that $x_{i_1 } = x_{i_2 } = ... = x_{i_j } = 0$ . LetG(x 1,x 2,…, x n] be the characteristic polynomial ofG(x 1,x 2,…, x n ), understanding thatG[0, 0, …, 0] ≡ 1. We prove that $$G[k_1 , k_2 ,..., k_n ] = \Sigma _{x \in ^{I_ * ^n } } \left[ {\Pi _{i = 1}^n P_{k_i + x_i - 2} (\lambda )} \right]( - 1)^{n - (\mathop \Sigma \limits_{i = 1}^n x_i )} G[x_1 , x_2 , ..., x_n ]$$ where x=(x 1,x 2,…,x n );G[k 1,k 2,…,k n ] andP n (γ) denote the characteristic polynomial ofG(k 1,k 2,…,k n ) andP n , respectively. Besides, ifG is a graph with λ1(G)≥1 we show that λ1(G)≤λ1(G(k 1,k 2, ...,k n )) < for all positive integersk 1,k 2,…,k n , where λ1 denotes the largest eigenvalue.  相似文献   

6.
Yuanlin Li  Yilan Tan 《代数通讯》2013,41(10):3769-3780
A group G is said to be a B(n, k) group if for any n-element subset {a 1,…, a n } of G, |{a i a j  | 1 ≤ i, j ≤ n}| ≤k. In this article, we give a complete characterization of B(4, 13) 2-groups, and then obtain a complete characterization of B(4, 13) groups.  相似文献   

7.
For a sequence p? = (p(1), p(2), ‥ .), let G(n, p?) denote the random graph with vertex set {1, 2, ‥ ., n} in which two vertices i, j are adjacent with probability p(|i ? j|), independently for each pair. We study how the convergence of probabilities of first order properties of G(n, p?), can be affected by the behaviour of p? and the strength of the language we use.  相似文献   

8.
《Quaestiones Mathematicae》2013,36(2):259-264
Abstract

An F-free colouring of a graph G is a partition {V1,V2,…,Vn} of the vertex set V(G) of G such that F is not an induced subgraph of G[Vi] for each i. A graph is uniquely F-free colourable if any two .F-free colourings induce the same partition of V(G). We give a constructive proof that uniquely C4-free colourable graphs exist.  相似文献   

9.
Let C(v1, …,vn) be a system consisting of a circle C with chords v1, …,vn on it having different endpoints. Define a graph G having vertex set V(G) = {v1, …,vn} and for which vertices vi and vj are adjacent in G if the chords vi and vj intersect. Such a graph will be called a circle graph. The chords divide the interior of C into a number of regions. We give a method which associates to each such region an orientation of the edges of G. For a given C(v1, …,vn) the number m of different orientations corresponding to it satisfies q + 1 ≤ mn + q + 1, where q is the number of edges in G. An oriented graph obtained from a diagram C(v1, …,vn) as above is called an oriented circle graph (OCG). We show that transitive orientations of permutation graphs are OCGs, and give a characterization of tournaments which are OCGs. When the region is a peripheral one, the orientation of G is acyclic. In this case we define a special orientation of the complement of G, and use this to develop an improved algorithm for finding a maximum independent set in G.  相似文献   

10.
In 2000, Enomoto and Ota [J Graph Theory 34 (2000), 163–169] stated the following conjecture. Let G be a graph of order n, and let n1, n2, …, nk be positive integers with \begin{eqnarray*}\sum\nolimits_{{{i}} = {{1}}}^{{{k}}} {{n}}_{{{i}}} = {{n}}\end{eqnarray*}. If σ2(G)≥n+ k?1, then for any k distinct vertices x1, x2, …, xk in G, there exist vertex disjoint paths P1, P2, …, Pk such that |Pi|=ni and xi is an endpoint of Pi for every i, 1≤ik. We prove an asymptotic version of this conjecture in the following sense. For every k positive real numbers γ1, …, γk with \begin{eqnarray*}\sum\nolimits_{{{i}} = {{1}}}^{{{k}}} \gamma_{{{i}}} = {{1}}\end{eqnarray*}, and for every ε>0, there exists n0 such that for every graph G of order nn0 with σ2(G)≥n+ k?1, and for every choice of k vertices x1, …, xkV(G), there exist vertex disjoint paths P1, …, Pk in G such that \begin{eqnarray*}\sum\nolimits_{{{i}} = {{1}}}^{{{k}}} |{{P}}_{{{i}}}| = {{n}}\end{eqnarray*}, the vertex xi is an endpoint of the path Pi, and (γi?ε)n<|Pi|<(γi + ε)n for every i, 1≤ik. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 37–51, 2010  相似文献   

11.
12.
The main theorem of that paper is the following: let G be a graph of order n, of size at least (n2 - 3n + 6)/2. For any integers k, n1, n2,…,nk such that n = n1 + n2 +. + nk and ni ? 3, there exists a covering of the vertices of G by disjoint cycles (Ci) =l…k with |Ci| = ni, except when n = 6, n1 = 3, n2 = 3, and G is isomorphic to G1, the complement of G1 consisting of a C3 and a stable set of three vertices, or when n = 9, n1 = n2 = n3 = 3, and G is isomorphic to G2, the complement of G2 consisting of a complete graph on four vertices and a stable set of five vertices. We prove an analogous theorem for bipartite graphs: let G be a bipartite balanced graph of order 2n, of size at least n2 - n + 2. For any integers s, n1, n2,…,ns with ni ? 2 and n = n1 + n2 + ? + ns, there exists a covering of the vertices of G by s disjoint cycles Ci, with |Ci| = 2ni.  相似文献   

13.
We say that a simple graph G is induced matching extendable, shortly IM-extendable, if every induced matching of G is included in a perfect matching of G. The main results of this paper are as follows: (1) For every connected IM-extendable graph G with |V(G)| ≥ 4, the girth g(G) ≤ 4. (2) If G is a connected IM-extendable graph, then |E(G)| ≥ ${3\over 2}|V(G)| - 2$; the equality holds if and only if GT × K2, where T is a tree. (3) The only 3-regular connected IM-extendable graphs are Cn × K2, for n ≥ 3, and C2n(1, n), for n ≥ 2, where C2n(1, n) is the graph with 2n vertices x0, x1, …, x2n−1, such that xixj is an edge of C2n(1, n) if either |ij| ≡ 1 (mod 2n) or |ij| ≡ n (mod 2n). © 1998 John Wiley & Sons, Inc. J. Graph Theory 28: 203–213, 1998  相似文献   

14.
For a graph G, let σ2(G) denote the minimum degree sum of a pair of nonadjacent vertices. We conjecture that if |V(G)| = n = Σki = 1 ai and σ2(G) ≥ n + k − 1, then for any k vertices v1, v2,…, vk in G, there exist vertex‐disjoint paths P1, P2,…, Pk such that |V(Pi)| = ai and vi is an endvertex of Pi for 1 ≤ ik. In this paper, we verify the conjecture for the cases where almost all ai ≤ 5, and the cases where k ≤ 3. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 163–169, 2000  相似文献   

15.
For a graph G and an integer k ≥ 1, let ςk(G) = dG(vi): {v1, …, vk} is an independent set of vertices in G}. Enomoto proved the following theorem. Let s ≥ 1 and let G be a (s + 2)-connected graph. Then G has a cycle of length ≥ min{|V(G)|, ς2(G) − s} passing through any path of length s. We generalize this result as follows. Let k ≥ 3 and s ≥ 1 and let G be a (k + s − 1)-connected graph. Then G has a cycle of length ≥ min{|V(G)|, − s} passing through any path of length s. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 177–184, 1998  相似文献   

16.
OD-characterization of Almost Simple Groups Related to U3(5)   总被引:1,自引:0,他引:1  
Let G be a finite group with order |G|=p1^α1p2^α2……pk^αk, where p1 〈 p2 〈……〈 Pk are prime numbers. One of the well-known simple graphs associated with G is the prime graph (or Gruenberg- Kegel graph) denoted .by г(G) (or GK(G)). This graph is constructed as follows: The vertex set of it is π(G) = {p1,p2,…,pk} and two vertices pi, pj with i≠j are adjacent by an edge (and we write pi - pj) if and only if G contains an element of order pipj. The degree deg(pi) of a vertex pj ∈π(G) is the number of edges incident on pi. We define D(G) := (deg(p1), deg(p2),..., deg(pk)), which is called the degree pattern of G. A group G is called k-fold OD-characterizable if there exist exactly k non- isomorphic groups H such that |H| = |G| and D(H) = D(G). Moreover, a 1-fold OD-characterizable group is simply called OD-characterizable. Let L := U3(5) be the projective special unitary group. In this paper, we classify groups with the same order and degree pattern as an almost simple group related to L. In fact, we obtain that L and L.2 are OD-characterizable; L.3 is 3-fold OD-characterizable; L.S3 is 6-fold OD-characterizable.  相似文献   

17.
For positive integers n1, n2, …, nI and graphs GI+1, GI+2, …, Gk, 1 ≤ / < k, the mixed Ramsey number χ(n1, …, n1, GI+1, …, Gk) is define as the least positive integer p such that for each factorization Kp = F1⊕ … ⊕ F FI+1⊕ … ⊕ Fk, it it follows that χ(Fi) ≥ ni for some i, 1 ? i ? l, or Gi is a subgraph of Fi for some i, l < i ? k. Formulas are presented for maxed Ramsey numbers in which the graphs GI+1, GI+2, …, Gk are connected, and in which k = I+1 and GI+1 is arbitray.  相似文献   

18.
Let O(G) denote the set of odd-degree vertices of a graph G. Let t ? N and let ??t denote the family of graphs G whose edge set has a partition. E(g) = E1 U E2 U … U Etsuch that O(G) = O(G[Ei]) (1 ? i ? t). This partition is associated with a double cycle cover of G. We show that if a graph G is at most 5 edges short of being 4-edge-connected, then exactly one of these holds: G ? ??3, G has at least one cut-edge, or G is contractible to the Petersen graph. We also improve a sufficient condition of Jaeger for G ? ??2p+1(p ? N).  相似文献   

19.
Let k≥1 be an integer and G=(V 1,V 2;E) a bipartite graph with |V 1|=|V 2|=n such that n≥2k+2. Our result is as follows: If $d(x)+d(y)\geq \lceil\frac{4n+k}{3}\rceil$ for any nonadjacent vertices xV 1 and yV 2, then for any k distinct vertices z 1,…,z k , G contains a 2-factor with k+1 cycles C 1,…,C k+1 such that z i V(C i ) and l(C i )=4 for each i∈{1,…,k}.  相似文献   

20.
We examine a family of graphs called webs. For integers n ? 2 and k, 1 ? k ? 12n, the web W(n, k) has vertices Vn = {1, …, n} and edges {(i, j): j = i+k, …, i+n ? k, for i?Vn (sums mod n)}. A characterization is given for the vertex packing polyhedron of W(n, k) to contain a facet, none of whose projections is a facet for the lower dimensional vertex packing polyhedra of proper induced subgraphs of W(n, k). Simple necessary and sufficient conditions are given for W(n, k) to contain W(n′, k′) as an induced subgraph; these conditions are used to show that webs satisfy the Strong Perfect Graph Conjecture. Complements of webs are also studied and it is shown that if both a graph and its complement are webs, then the graph is either an odd hole or its complement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号