首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fast and an efficient ultrasound‐assisted extraction technique using a lower density extraction solvent than water was developed for the trace‐level determination of tebuconazole in garlic, soil and water samples followed by capillary gas chromatography combined with nitrogen–phosphorous selective detector (GC–NPD). In this approach, ultrasound radiation was applied to accelerate the emulsification of the ethyl acetate in aqueous samples to enhance the extraction efficiency of tebuconazole without requiring extra partitioning or cleaning, and the use of capillary GC–NPD was a more sensitive detection technique for organonitrogen pesticides. The experimental results indicate an excellent linear relationship between peak area and concentration obtained in the range 1–50 μg/kg or μg/L. The limit of detection (S/N, 3 ± 0.5) and limit of quantification (S/N, 7.5 ± 2.5) were obtained in the range 0.2–3 and 1–10 μg/kg or μg/L. Good spiked recoveries were achieved from ranges 95.55–101.26%, 96.28–99.33% and 95.04–105.15% in garlic, Nanivaliyal soil and Par River water, respectively, at levels 5 and 20 μg/kg or μg/L, and the method precision (% RSD) was ≤5%. Our results demonstrate that the proposed technique is a viable alternative for the determination of tebuconazole in complex samples.  相似文献   

2.
Two approaches based on solidification of floating drop microextraction (SFDME) and homogenous liquid–liquid microextraction (HLLE) were compared for the extraction and preconcentration of di‐(2‐ethylhexyl) phthalate (DEHP) and di‐(2‐ethylhexyl) adipate (DEHA) from the mineral water samples. In SFDME, a floated drop of the mixture of acetophenone/1‐undecanol (1:8) was exposed on the surface of the aqueous solution and extraction was permitted to occur. In HLLE, a homogenous ternary solvent system was used by water/methanol/chloroform and the phase separation phenomenon occurred by salt addition. Under the optimal conditions, the LODs for the two target plasticizers (DEHA and DEHP), obtained by SFDME–GC‐FID and HLLE–GC‐FID, were ranged from 0.03 to 0.01 μg/L and 0.02 to 0.01 μg/L, respectively. HLLE provided higher preconcentration factors (472.5‐ and 551.2‐fold) within the shorter extraction time as well as better RSDs (4.5–6.9%). While, in SFDME, high preconcentration factors in the range of 162–198 and good RSDs in the range of 5.2–9.6% were obtained. Both methods were applied for the analysis of two plasticizers in different water samples and two target plasticizers were found in the bottled mineral water after the expiring time and the boiling water was exposed to a polyethylene vial.  相似文献   

3.
A solid‐phase extraction (SPE) method was developed to extract 14 pesticides simultaneously from environment samples using cigarette filter as the sorbent before gas chromatography‐mass spectrometry (GC‐MS) analysis. Parameters influencing the extraction efficiency, such as the sample loading flow rate, eluent and elution volume, were optimized. The optimum sample loading rate was 3 mL/min, and the retained compounds were eluted with 6 mL of eluent at 1 mL/min under vacuum. Good linearity was obtained for all the 14 pesticides (r2>0.99) from 0.1 to 20 μg/L for water and from 2 to 400 μg/kg for soil samples. The detection limits (signal‐to‐noise=3) of the proposed method ranged from 0.01 to 0.20 μg/L for water samples and from 0.42 to 6.95 μg/kg for soil samples. The developed method was successfully applied for determination of the analytes in real environmental samples, and the mean recoveries ranged from 76.4 to 103.7% for water samples and from 79.9 to 105.3% for soil samples with the precisions (relative standard deviation) between 2.0 and 13.6%.  相似文献   

4.
A simple and sensitive bioanalytical method was developed and validated for determination of etoposide in plasma and microdialysis samples of Walker‐256 tumor‐bearing rats. A microdialysis probe was implanted in the center of a subcutaneous tumor and Ringer's solution was used as perfusion medium. Chromatographic separation was conducted on a Shimadzu CLC‐C8 column using a mobile phase consisting of water–acetonitrile (70:30; v/v) adjusted to pH 4.0 ± 0.1 with formic acid at a gradient flow rate of 1.0–0.6 mL/min, an injection volume of 30 μL and UV detection at 210 nm. Microdialysate samples were analyzed without processing and plasma samples (100 μL) were spiked with phenytoin as internal standard (IS) (1 µg/mL) followed by extraction with tert‐butyl methyl ether. The organic layer was evaporated and reconstituted with 100 μL of mobile phase before injection. The methods for plasma and microdialysate were linear in the ranges of 25–10,000 ng/mL and of 10–1500 ng/mL, respectively. All the validation parameters such as intra‐ and inter‐day precision and accuracy and stability were within the limits established by international guidelines. The present method was successfully applied in the investigation of etoposide pharmacokinetics in rat plasma and microdialysate tumor samples following a single 15 mg/kg intravenous dose. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, a simple and rapid extraction method based on the application of polypyrrole‐coated Fe3O4 nanoparticles as a magnetic solid‐phase extraction sorbent was successfully developed for the extraction and preconcentration of trace amounts of formaldehyde after derivatization with 2,4‐dinitrophenylhydrazine. The analyses were performed by high‐performance liquid chromatography followed by UV detection. Several variables affecting the extraction efficiency of the formaldehyde, i.e., sample pH, amount of sorbent, salt concentration, extraction time and desorption conditions were investigated and optimized. The best working conditions were as follows: sample pH, 5; amount of sorbent, 40 mg; NaCl concentration, 20% w/v; sample volume, 20 mL; extraction time, 12 min; and 100 μL of methanol for desorption of the formaldehyde within 3 min. Under the optimal conditions, the performance of the proposed method was studied in terms of linear dynamic range (10–500 μg/L), correlation coefficient (R2 ≥ 0.998), precision (RSD% ≤ 5.5) and limit of detection (4 μg/L). Finally, the developed method was successfully applied for extraction and determination of formaldehyde in tap, rain and tomato water samples, and satisfactory results were obtained.  相似文献   

6.
A novel low‐density solvent‐based vortex‐assisted surfactant‐enhanced‐emulsification liquid–liquid microextraction with the solidification of floating organic droplet method coupled with high‐performance liquid chromatography was developed for the determination of 3,5,6‐trichloro‐2‐pyridinol, phoxim and chlorpyrifos‐methyl in water samples. In this method, the addition of a surfactant could enhance the speed of the mass transfer from the sample solution into the extraction solvent. The extraction solvent could be dispersed into the aqueous by the vortex process. The main parameters affecting the extraction efficiency were investigated and the optimum conditions were established as follows: 80 μL 1‐undecanol as extraction solvent, 0.2 mmol/L of Triton X‐114 selected as the surfactant, the vortex time was fixed at 60 s with the vortex agitator set at 3000 rpm, the concentration of acetic acid in sample solution was 0.4% v/v and 1.0 g addition of NaCl. Under the optimum conditions, the enrichment factors were from 172 to 186 for the three analytes. The linear ranges were from 0.5 to 500 μg/L with a coefficient of determination (r2) of between 0.9991 and 0.9995. Limits of detections were varied between 0.05 and 0.12 μg/L. The relative standard deviations (n = 6) ranged from 0.26 to 2.62%.  相似文献   

7.
Polydopamine was coated onto cotton fibers as the adsorbent to improve the extraction efficiency. Polydopamine‐coated cotton fibers were placed into a polyetheretherketone tube for in‐tube solid‐phase microextraction. To develop an online analysis system, the extraction tube was connected with high‐performance liquid chromatography. The tube was evaluated with five estrogenic analytes, and the extraction and desorption conditions were optimized to get high extraction efficiency. Under the optimum conditions, the enrichment factors of five analytes were 143–1745. An online analysis method was established, it had large linear ranges (0.10–40 and 0.16–40 μg/L), low limits of detection (0.03, 0.05 μg/L) and satisfactory repeatability (≤3.2%). The analysis method was applied to detect targets in the real samples like as hot water in new plastic cup and tap water. The relative recoveries spiked at 1 and 5 μg/L in these samples were investigated and the results were in the range of 83.7–109%.  相似文献   

8.
A sensitive and reliable method based on MEKC has been developed and validated for trace determination of neonicotinoid insecticides (thiamethoxam, acetamiprid, and imidacloprid) and the metabolite 6‐chloronicotinic acid in water and soil matrices. Optimum separation of the neonicotinoid insecticides was obtained on a 58 cm long capillary (75 μm id) using as the running electrolyte 40 mM SDS, 5 mM borate (pH 10.4), and 5% (v/v) methanol at a temperature of 25°C, a voltage of 25 kV and with hydrodynamic injection (10 s). The analysis time was less than 7 min. Prior to MEKC determination, the samples were purified and enriched by carrying out extraction‐preconcentration steps. For aqueous samples, off‐line SPE with a sorptive material such as Strata‐X (polymeric hydrophobic sorbent) and octadecylsilane (C18) was carried out to clean up and preconcentrate the insecticides. However, for soil samples, matrix solid‐phase dispersion (MSPD) was applied with C18 used as the dispersant. Good linearity, accuracy, and precision were obtained and the detection limits were in the range between 0.01 and 0.07 μg mL?1 for river water and 0.17 and 0.37 μg g?1 for soil samples. Recovery levels reached greater than 92% for all of the assayed neonicotinoids in river water samples with Strata‐X. In soil matrices, the best recoveries (63–99%) were obtained with MSPD.  相似文献   

9.
A rapid pioneering method has been developed to simultaneously determine residues of three pesticides (thiamethoxam, clothianidin, and metazachlor) in soil by ultrahigh performance liquid chromatography coupled to a mass spectrometry detector (quadrupole time‐of‐flight). An efficient extraction procedure (90–105% average analyte recoveries) has also been proposed, involving solid–liquid extraction by a mixture of water and methanol (60:40, v/v), centrifugation, and concentration. A chromatographic analysis of the compounds was achieved in 5.5 min by means of a core–shell technology based column (Kinetex® EVO C18, 50 × 2.1 mm, 1.7 μm, 100 Å). The mobile phase (0.3 mL/min, gradient elution mode) consisted of 0.1% v/v formic acid in water and 0.1% v/v formic acid in acetonitrile. The method was fully validated in terms of selectivity, detection and quantification limits, matrix effect, linearity, trueness, and precision. Low limits of detection and quantification were obtained, ranging from 0.2 to 3.0 μg/kg, which are similar to those published in previous studies, while the absence of a significant matrix effect allowed quantification of the pesticides with standard calibration curves. The proposed method was applied for an analysis of pesticides in several soil samples from experimental fields dedicated to oilseed rape cultivars.  相似文献   

10.
A simple and sensitive method is presented for the analysis of nonylphenol (NP) and bisphenol A (BPA), two well known hormonally active agents (HAAs), in the samples of river water. The method involves extraction of the sample by a graphitized carbon black (GCB) solid‐phase extraction, and determination by an ion‐trap gas chromatography‐mass spectrometry (GC‐MS). The large‐volume injection technique provides high precision and sensitivity for NP and BPA, to quantitation at < 0.05 μg/L in 200 mL of water samples. Recovery of NP and BPA in spiked water samples ranged from 80% to 85%. Relative standard deviations (RSD) of replicate analyses ranged from 1.6% to 6.9%. The concentrations of NP in rivers were in the range between 0.4 to 2.4 μg/L, which were below the threshold concentration (10 μg/L) for vitellogenin induction in fish, but 78%) of water samples from five rivers exceeded the predicted‐no‐effect concentration (PNEC) of 0.7 μg/L as proposed recently. The concentrations of BPA ranged from < 0.05 μg/L to 3.0 μg/L, which all were below the PNEC of 64 μg/L.  相似文献   

11.
A novel method has been developed for the analysis of zearalenone in maize products by vortex‐assisted ionic‐liquid‐based dispersive liquid–liquid microextraction combined with HPLC and fluorescence detection. Maize samples were extracted with methanol/water (80:20, v/v) and the extraction solution was then used as the dispersive solvent in the microextraction procedure. The analyte was rapidly transmitted to a small volume of ionic liquid and was determined by HPLC. Various parameters affecting the recovery of the mycotoxin were investigated, such as the type and volume of the extraction solvent, the type and volume of the dispersive solvent, the pH of the aqueous phase, the salt addition, and the time of vortex and centrifugation. Under the optimal experimental conditions, a good linearity of the analyte was obtained in the range of 1.0–1000.0 μg/L with the correlation coefficient of 0.9998. The limit of detection (S/N = 3) and quantification (S/N = 10) were 0.3 and 1.0 μg/kg, and the mean recoveries ranged from 83.5 to 94.9%, with a relative standard deviation less than 5.0%. The proposed method was demonstrated to be simple, cheap, quick, and highly selective and was successfully applied to the determination of zearalenone in maize products.  相似文献   

12.
This paper described a novel approach for the determination of bisphenol A by dispersive liquid‐phase microextraction with in situ acetylation prior to GC‐MS. In this derivatization/extraction method, 500 μL acetone (disperser solvent) containing 30.0 μL chlorobenzene (extraction solvent) and 30.0 μL acetic anhydride (derivatization reagent) was rapidly injected into 5.00 mL aqueous sample containing bisphenol A and K2CO3 (0.5% w/v). Within a few seconds the analyte was derivatized and extracted at the same time. After centrifugation, 1.0 μL of sedimented phase containing enriched analyte was determined by GC‐MS. Some important parameters, such as type and volume of extraction and disperser solvent, volume of acetic anhydride, derivatization and extraction time, amount of K2CO3, and salt addition were studied and optimized. Under the optimum conditions, the LOD and the LOQ were 0.01, 0.1 μg/L, respectively. The experimental results indicated that there was linearity over the range 0.1–50 μg/L with coefficient of correlation 0.9997, and good reproducibility with RSD 3.8% (n = 5). The proposed method has been applied for the analysis of drinking water samples, and satisfactory results were achieved.  相似文献   

13.
The determination of 15 pyrethroids in soil and water samples was carried out by gas chromatography with mass spectrometry. Compounds were extracted from the soil samples (4 g) using solid–liquid extraction and then salting‐out assisted liquid–liquid extraction. The acetonitrile phase obtained (0.8 mL) was used as a dispersant solvent, to which 75 μL of chloroform was added as an extractant solvent, submitting the mixture to dispersive liquid–liquid microextraction. For the analysis of water samples (40 mL), magnetic solid‐phase extraction was performed using nanocomposites of magnetic nanoparticles and multiwalled carbon nanotubes as sorbent material (10 mg). The mixture was shaken for 45 min at room temperature before separation with a magnet and desorption with 3 mL of acetone using ultrasounds for 5 min. The solvent was evaporated and reconstituted with 100 μL acetonitrile before injection. Matrix‐matched calibration is recommended for quantification of soil samples, while water samples can be quantified by standards calibration. The limits of detection were in the range of 0.03–0.5 ng/g (soil) and 0.09–0.24 ng/mL (water), depending on the analyte. The analyzed environmental samples did not contain the studied pyrethroids, at least above the corresponding limits of detection.  相似文献   

14.
A high‐throughput micro‐solid‐phase extraction device based on a 96‐well plate was constructed and applied to the determination of pesticide residues in various apple samples. Butyl methacrylate and ethylene glycol dimethacrylate were copolymerized as a monolithic polymer and placed in the cylindrically shaped stainless‐steel meshes of 96‐micro‐solid‐phase extraction device and used as an extracting unit. Before the micro‐solid‐phase extraction, microwave‐assisted extraction was employed to facilitate the transfer of the pesticide residues from the apple matrix to liquid media. Then, 1 mL of the aquatic samples was transferred into the 96‐well plate and the 96‐micro‐solid‐phase extraction device was applied for the extraction of the selected pesticides. Influential parameters, such as sorbent‐to‐sorbent reproducibility, microwave‐assisted extraction time, ionic strength and micro‐solid‐phase extraction time, were optimized. The limits of quantitation were below 120 μg/kg, which are lower than the maximum residue limits. The developed method was successfully implemented for the extraction and determination of the selected pesticides from 20 different apple samples gathered from local markets. Phosalone was identified and quantified at the concentration level of 147 (±16.4) μg/kg in one of the samples.  相似文献   

15.
建立了饮料中邻苯二甲酸二(2-乙基)己酯(DEHP)和邻苯二甲酸二异壬酯(DINP)残留的液相色谱-串联质谱(LC-MS/MS)检测方法。2.0 g样品经8 mL甲醇振荡提取、定容、离心,取上清液过滤,采用LC-MS/MS电喷雾电离,多反应监测(MRM)模式对样品进行分析。DEHP在浓度范围为2~200μg/L,DINP在10~1000μg/L内线性良好,相关系数均大于0.998。实验表明:样品无明显的基质效应。样品中添加0.01~5 mg/kg的DEHP和DINP,其回收率为86.2%~111.6%;相对标准偏差(n=6)小于11%;DEHP检出限为0.008 mg/kg,定量限为0.01 mg/kg;DINP检出限为0.01 mg/kg,定量限为0.05 mg/kg。本方法提取效果好,具有良好的灵敏度、回收率和重复性,被成功用于实际饮料样品中DEHP和DINP的测定。  相似文献   

16.
A porous and highly efficient polyaniline‐based solid‐phase microextraction (SPME) coating was successfully prepared by the electrochemical deposition method. A method based on headspace SPME followed by HPLC was established to rapidly determine trace chlorophenols in water samples. Influential parameters for the SPME, including extraction mode, extraction temperature and time, pH and ionic strength procedures, were investigated intensively. Under the optimized conditions, the proposed method was linear in the range of 0.5–200 μg/L for 4‐chlorophenol and 2,4,6‐trichlorophenol, 0.2–200 μg/L for 2,4‐dichlorophenol and 2–200 μg/L for 2,3,4,6‐tetrachlorophenol and pentachlorophenol, with satisfactory correlation coefficients (>0.99). RSDs were <15% (n = 5) and LODs were relatively low (0.10–0.50 μg/L). Compared to commercial 85 μm polyacrylate and 60 μm polydimethylsiloxane/divinylbenzene fibers, the homemade polyaniline fiber showed a higher extraction efficiency. The proposed method has been successfully applied to the determination of chlorophenols in water samples with satisfactory recoveries.  相似文献   

17.
We describe a highly sensitive micro‐solid‐phase extraction method for the pre‐concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high‐performance liquid chromatography with a variable‐wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2‐ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting‐out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3–200 μg/L. The limits of detection were 0.04–0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples.  相似文献   

18.
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.  相似文献   

19.
Trace levels analysisbenzalkonium chlorides (BAKs) in river water and wastewater treatment plants (WWTP) effluents were determined by capillary electrophoresis (CE) following solid‐phase extraction (SPE) and salting‐out extraction. Salting‐out extraction using an appropriate ratio of sodium chloride (NaCl) and acetonitrile (ACN) mixed with concentrated SPE elutant was capable of providing more than 500‐fold enhancement in detection sensitivity. The ratios of ACN and NaCl for salting‐out extraction were investigated and optimized. Matrix interference was eliminated by salting‐out extraction. Limits of quantitation of BAK homologues were achieved at 0.1 μg/L in 250 mL water samples. Recoveries of BAKs in various spiked water samples ranged from 70% to 84% with relative standard deviation (RSD) less than 9%. Trace amounts of total BAKs were detected in river water and WWTP effluent samples ranging from 27 to 145 μg/L at the first time by CE.  相似文献   

20.
A novel dispersive liquid‐phase microextraction method without dispersive solvents has been developed for the enrichment and sensitive determination of triclosan and triclocarban in environmental water samples prior to HPLC‐ESI‐MS/MS. This method used only green solvent 1‐hexyl‐3‐methylimidazolium hexafluorophosphate as extraction solvent and overcame the demerits of the use of toxic solvents and the instability of the suspending drop in single drop liquid‐phase microextraction. Important factors that may influence the enrichment efficiencies, such as volume of ionic liquid, pH of solutions, extraction time, centrifuging time and temperature, were systematically investigated and optimized. Under optimum conditions, linearity of the method was observed in the range of 0.1–20 μg/L for triclocarban and 0.5–100 μg/L for triclosan, respectively, with adequate correlation coefficients (R>0.9990). The proposed method has been found to have excellent detection sensitivity with LODs of 0.04 and 0.3 μg/L, and precisions of 4.7 and 6.0% (RSDs, n=5) for triclocarban and triclosan, respectively. This method has been successfully applied to analyze real water samples and satisfactory results were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号