首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes formed by guanidinium cation and a pair of aromatic molecules among benzene, phenol, or indole have been computationally studied to determine the characteristics of the cation···π interaction in ternary systems modeling amino acid side chains. Guanidinium coordinates to the aromatic units preferentially in the following order: indole, phenol, and benzene. Complexes containing two different aromatic units show an intermediate behavior between that observed for complexes with only one kind of aromatic unit. Most stable structures correspond to doubly‐T shaped arrangements with the two aromatic units coordinating guanidinium by its NH2 groups. Other structures with only one aromatic unit coordinated to guanidinium, such as T‐shaped or parallel‐stacked ones, are less favorable but still showing significant stabilization. In indole and phenol complexes, the formation of hydrogen bonds between the aromatic molecules introduces extra stabilization in T‐shaped structures. Three body effects are small and repulsive in doubly T‐shaped minima. Only when hydrogen bonds involving the aromatic molecules are formed in T‐shaped structures a cooperative effect can be observed. In most complexes the interaction is controlled by electrostatics, with induction and dispersion also contributing significantly depending on the nature and orientation of the aromatic species forming the complex. Although the stability in these systems is mainly controlled by the intensity of the interaction between guanidinium and the aromatic molecules coordinated to it, interactions between aromatic molecules can modulate the characteristics of the complex, especially when hydrogen bonds are formed. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The reaction of 2, 2′‐bipyridine‐6, 6′‐dicarboxylic acid (H2bpdc) with zinc nitrate and different rare earth chlorides generates two novel three‐dimensional supramolecules Zn(6‐bpc)2 · 2H2O ( 1 ) and Ce(bpdc)2 · H2O ( 2 ) (6‐Hbpc = 2, 2′‐bipyridine‐6‐carboxylic acid). The left‐and right‐handed helical chains give rise to a 3D supramolecular framework through hydrogen‐bond and weak π–π interactions in complex 1 . Interestingly, the decarboxylation occurred and the bpdc ligand was transformed into 6‐bpc species under the hydrothermal reaction in the presence of NdIII ions, while the decarboxylation did not occur when CeIII ions were used. In the structure of 2 , one central Ce(IV) atom coordinates to two bpdc ligands, resulting in a discrete molecule. These discrete units are further extended into a 3D supramolecular structure through intermolecular hydrogen bonds and π–π interactions.  相似文献   

3.
The title complex, C8H6O4·2C6H7N, consists of two crystallographically independent 1:2 clusters of benzene‐1,3‐­dicarboxylic acid and 4‐methyl­pyridine. Each cluster, the components of which are linked by O—H⋯N hydrogen bonds, is almost planar by alignment of C—H⋯O hydrogen bonds. Herring‐bone ribbons of clusters are formed by other C—H⋯O hydrogen bonds, and these ribbons are further packed to form a laminar structure by π–π inter­actions.  相似文献   

4.
The neutral compounds [Pt(bzq)(CN)(CNR)] (R=tBu ( 1 ), Xyl ( 2 ), 2‐Np ( 3 ); bzq= benzoquinolate, Xyl=2,6‐dimethylphenyl, 2‐Np=2‐napthyl) were isolated as the pure isomers with a trans‐Cbzq,CNR configuration, as confirmed by 13C{1H} NMR spectroscopy in the isotopically marked [Pt(bzq)(13CN)(CNR)] (R=tBu ( 1′ ), Xyl ( 2′ ), 2‐Np ( 3′ )) derivatives (δ13CCN≈110 ppm; 1J(Pt,13C)≈1425 Hz]. By contrast, complex [Pt(bzq)(C≡CPh)(CNXyl)] ( 4 ) with a trans‐Nbzq,CNR configuration, has been selectively isolated from [Pt(bzq)Cl(CNXyl)] (trans‐Nbzq,CNR) using Sonogashira conditions. X‐ray diffraction studies reveal that while 1 adopts a columnar‐stacked chain structure with Pt–Pt distances of 3.371(1) Å and significant π???π interactions (3.262 Å), complex 2 forms dimers supported only by short Pt???Pt (3.370(1) Å) interactions. In complex 4 the packing is directed by weak bzq???Xyl and bzq???C≡E (C, N) interactions. In solid state at room temperature, compounds 1 and 2 both show a bright red emission (?=42.1 % 1 , 57.6 % 2 ). Luminescence properties in the solid state at 77 K and concentration‐dependent emission studies in CH2Cl2 at 298 K and at 77 K are also reported for 1 , 1·CHCl3 , 2 , 2' , 2·CHCl3 , 3 , 4 .  相似文献   

5.
The synthesis and structural characterization of 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazole [C16H12N2O2, (I)], 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium chloride monohydrate [C16H13N2O2+·Cl·H2O, (II)] and the hydrobromide salt 5,6‐dimethyl‐2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium bromide [C18H17N2O2+·Br, (III)] are described. Benzimidazole (I) displays two sets of aromatic interactions, each of which involves pairs of molecules in a head‐to‐tail arrangement. The first, denoted set (Ia), exhibits both intermolecular C—H...π interactions between the 2‐(furan‐2‐yl) (abbreviated as Fn) and 1‐(furan‐2‐ylmethyl) (abbreviated as MeFn) substituents, and π–π interactions involving the Fn substituents between inversion‐center‐related molecules. The second, denoted set (Ib), involves π–π interactions involving both the benzene ring (Bz) and the imidazole ring (Im) of benzimidazole. Hydrated salt (II) exhibits N—H...OH2...Cl hydrogen bonding that results in chains of molecules parallel to the a axis. There is also a head‐to‐head aromatic stacking of the protonated benzimidazole cations in which the Bz and Im rings of one molecule interact with the Im and Fn rings of adjacent molecules in the chain. Salt (III) displays N—H...Br hydrogen bonding and π–π interactions involving inversion‐center‐related benzimidazole rings in a head‐to‐tail arrangement. In all of the π–π interactions observed, the interacting moieties are shifted with respect to each other along the major molecular axis. Basis set superposition energy‐corrected (counterpoise method) interaction energies were calculated for each interaction [DFT, M06‐2X/6‐31+G(d)] employing atomic coordinates obtained in the crystallographic analyses for heavy atoms and optimized H‐atom coordinates. The calculated interaction energies are −43.0, −39.8, −48.5, and −55.0 kJ mol−1 for (Ia), (Ib), (II), and (III), respectively. For (Ia), the analysis was used to partition the interaction energies into the C—H...π and π–π components, which are 9.4 and 24.1 kJ mol−1, respectively. Energy‐minimized structures were used to determine the optimal interplanar spacing, the slip distance along the major molecular axis, and the slip distance along the minor molecular axis for 2‐(furan‐2‐yl)‐1H‐benzimidazole.  相似文献   

6.
In this study, several lone pair–π and aerogen–π complexes between XeO3 and XeF4 and aromatic rings with different electronic natures (benzene, trifluorobenzene, and hexafluorobenzene) are optimized at the RI‐MP2/aug‐cc‐pVTZ level of theory. All complexes are characterized as true minima by frequency analysis calculations. The donor/acceptor role of the ring in the complexes is analyzed using the natural bond orbital computational tool, showing a remarkable contribution of orbital interactions to the global stabilization of the aerogen–π complexes. Finally, Bader's AIM analysis of several complexes is performed to further characterize the lone pair–π and aerogen–π interactions.  相似文献   

7.
Time‐resolved fluorescence and transient absorption experiments uncover a distinct change in the relaxation dynamics of the homo‐dimer formed by two 2,5‐bis[1‐(4‐N‐methylpyridinium)ethen‐2‐yl)]‐N‐methylpyrrole ditriflate ( M ) units linked by a short alkyl chain when compared to that of the monomer M . Fluorescence decay traces reveal characteristic decay times of 1.1 ns and 210 ps for M and the dimer, respectively. Transient absorption spectra in the spectral range of 425–1050 nm display similar spectral features for both systems, but strongly differ in the characteristic relaxation times gathered from a global fit of the experimental data. To rationalize the data we propose that after excitation of the dimer the energy localizes on one M branch and then decays to a dark state, peculiar only of the dimer. This dark state relaxes to the ground state within 210 ps through non‐radiative relaxation. The nature of the dark state is discussed in relation to different possible photophysical processes such as excimer formation and charge transfer between the two M units. Anisotropy decay traces of the probe‐beam differential transmittance of M and the dimer fall on complete different time scales as well. The anisotropy decay for M is satisfactorily ascribed to rotational diffusion in DMSO, whereas for the dimer it occurs on a faster time scale and is likely caused by energy‐transfer processes between the two monomer M units.  相似文献   

8.
Tetrakis(diethyl phosphonate), Tetrakis(ethyl phenylphosphinate)‐, and Tetrakis(diphenylphosphine oxide)‐Substituted Phthalocyanines The title compounds 7, 9 , and 11 are obtained by tetramerization of diethyl (3,4‐dicyanophenyl)phosphonate ( 5 ), ethyl (3,4‐dicyanophenyl)phenylphosphinate ( 8 ), and 4‐(diphenylphosphinyl)benzene‐1,2‐dicarbonitrile ( 10 ). The 31P‐NMR spectra of the phthalocyanines 7, 9 , and 11 and of their metal complexes present five to eight signals confirming the formation of four constitutional isomers with the expected C4h, D2h, C2v, and Cs symmetry. In the FAB‐MS of the Zn, Cu, and Ni complexes of 7 and 9 , the peaks of dimeric phthalocyanines are observed. By gel‐permeation chromatography, the monomeric complex [Ni( 7 )] and a dimer [Ni( 7 )]2 can be separated. These dimers differ from the known phthalocyanine dimers, i.e., possibly the P(O)(OEt)2 and P(O)(Ph)(OEt) substituents in 7 and 9 are involved in complexation. The free phosphonic acid complex [Zn( 12 )] and [Cu( 12 )] are H2O‐soluble. In the FAB‐MS of [Zn( 12 )], only the peaks of the dimer are present; the ESI‐MS confirms the existence of the dimer and the metal‐free dimer. In the UV/VIS spectrum of [Zn( 12 )], the hypsochromic shift characteristic for the known type of dimers from 660–700 nm to 620–640 nm is observed. As in the FAB‐MS of [Zn( 12 )], the free phosphinic acid complex [Zn( 13 )] shows only the monomer, an ESI‐MS cannot be obtained for solubility problems. The UV/VIS spectrum of [Zn( 13 )] demonstrates the existence of the monomer as well as of the dimer.  相似文献   

9.
[μ‐N,N′‐Bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide‐<!?show [forcelb]><!?tlsb=0.12pt>1:2κ2N:N′]bis{[N,N′‐bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide‐κN]diiodidomercury(II)}, [Hg2I4(C18H14N4O2)3], is an S‐shaped dinuclear molecule, composed of two HgI2 units and three N,N′‐bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide (L) ligands. The central L ligand is centrosymmetric and coordinated to two HgII cations via two pyridine N atoms, in a synsyn conformation. The two terminal L ligands are monodentate, with one uncoordinated pyridine N atom, and each adopts a synanti conformation. The HgI2 units show highly distorted tetrahedral (sawhorse) geometry, as the HgII centres lie only 0.34 (2) or 0.32 (2) Å from the planes defined by the I and pyridine N atoms. Supramolecular interactions, thermal stability and solid‐state luminescence properties were also measured.  相似文献   

10.
The first examples of air‐stable 20π‐electron 5,10,15,20‐tetraaryl‐5,15‐diaza‐5,15‐dihydroporphyrins, their 18π‐electron dications, and the 19π‐electron radical cation were prepared through metal‐templated annulation of nickel(II) bis(5‐arylamino‐3‐chloro‐8‐mesityldipyrrin) complexes followed by oxidation. The neutral 20π‐electron derivatives are antiaromatic and the cationic 18π‐electron derivatives are aromatic in terms of the magnetic criterion of aromaticity. The meso N atoms in these diazaporphyrinoids give rise to characteristic redox and optical properties for the compounds that are not typical of isoelectronic 5,10,15,20‐tetraarylporphyrins.  相似文献   

11.
On irradiation (350 nm) in benzene solution, dihydropyranone 3 affords predominantly (75%) the cis‐anti‐cis HH‐dimer 4 , but in smaller amounts (12%) also dimer 5 , wherein one of the six‐membered rings is trans‐fused to the (central) cyclobutane ring. The constitution and configuration of 5 was fully elucidated by NMR‐analysis. On contact with SiO2, 5 isomerizes quantitatively to the cis‐anti‐cis HT‐dimer 7 , the structure of which was established by X‐ray crystal‐structure determination.  相似文献   

12.
Thermolysis of [Cp*Ru(PPh2(CH2)PPh2)BH2(L2)] 1 (Cp*=η5‐C5Me5; L=C7H4NS2), with terminal alkynes led to the formation of η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)B{R‐C=CH2}(L)2] ( 2 a – c ) and η2‐vinylborane complexes [Cp*Ru(R‐C=CH2)BH(L)2] ( 3 a – c ) ( 2 a , 3 a : R=Ph; 2 b , 3 b : R=COOCH3; 2 c , 3 c : R=p‐CH3‐C6H4; L=C7H4NS2) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a – c are linked by a unique η4‐interaction. Conversions of 1 into 3 a – c proceed through the formation of intermediates 2 a – c . Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ‐borane complex [Cp*RuCO(μ‐H)BH2L] 4 (L=C7H4NS2) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)BH{R‐C=CH2}(L)] 5 and [Cp*Ru(μ‐H)BH{HC=CH‐R}(L)] 6 (R=COOCH3; L=C7H4NS2) by Markovnikov and anti‐Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η4‐σ,π‐borataallyl complex [Cp*Ru(μ‐H)BH{R‐C=CH‐R}(L)] 7 (R=COOCH3; L=C7H4NS2). An agostic interaction was also found to be present in 2 a – c and 5 – 7 , which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, 1H, 11B, 13C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b , 3 a – c and 5 – 7 . DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds.  相似文献   

13.
Molecular packing analyses were carried out on 15 crystal data sets of chloro‐substituted Schiff bases, including that of the title compound, C15H15ClN2. C—H⋯π and π–π interactions play a major role in the molecular self‐assembly in the crystal. The former interactions favor mol­ecules assembling into a screw, with a non‐centrosymmetric crystal structure. When the molecular dipole is small, π–π interactions favor a parallel, but not usually antiparallel, mode of packing. Weak C—H⋯X hydrogen bonds (X = Cl or Br) and XX interactions seem to be a secondary driving force in packing. The title mol­ecule takes the trans form and the two benzene rings are twisted around the central linkage in opposite directions. In the crystal structure, mol­ecules interact through C—H⋯π and π–π interactions, forming a `dimer' and further forming double chains along [001]. The double chains are extended along [10] through C—H⋯Cl hydrogen bonds, forming double layers in (010). In the third direction, there are only ordinary, weaker, van der Waals interactions, which explains the crystal habit (i.e. thin plate).  相似文献   

14.
The new triplesalophen ligand H6kruseBr was synthesized as a variation of the triplesalophen ligands H6baronR by replacing a phenyl by a methyl group at the terminal ketimine in order to allow closer contacts of trinuclear complexes due to less steric hindrance by the smaller methyl group. The ligand H6kruseBr was used to synthesize the trinuclear complex [(kruseBr)NiII3], which is insoluble in organic solvents despite the coordinating solvent pyridine. Recrystallization from pyridine results in the complex [(kruseBr){Ni2(Ni(py)2)}], which was characterized by single‐crystal X‐ray diffraction. Two NiII ions are four‐coordinate by the salophen‐like subunits while the third NiII ion is six‐coordinate by two additional pyridine donors. The analysis of the molecular and crystal structure in comparison to that of NiII3 complexes of (baronR)6– reveals that the methyl group in [(kruseBr){Ni2(Ni(py)2)}] results in less ligand folding and in closer contact distance of two NiII3 complexes by ππ interactions of 3.2 Å. This indicates that trinuclear complexes of H6kruseBr are more suitable than complexes of H6baronR as molecular building blocks for the anticipated synthesis of nonanuclear single‐molecule magnets.  相似文献   

15.
A π‐conjugated polymer containing a dithiafulvene unit and a bipyridyl unit was prepared by cycloaddition polymerization of aldothioketene derived from 5,5′‐diethynyl‐2,2′‐bipyridine. Ultraviolet–visible (UV–vis) absorption spectra showed that the π‐conjugation system of the polymer expanded more effectively than that of a benzene analogue of poly(dithiafulvene) obtained from 1,4‐diethynylbenzene. Cyclic voltammetry measurements indicated that the dithiafulvene–bipyridyl polymer was a weaker electron‐donor polymer than the benzene analogue. These results supported the idea that the incorporation of the electron‐accepting bipyridyl moiety into conjugated poly(dithiafulvene) induced an intramolecular charge‐transfer (CT) effect between the units. Treatment of the dithiafulvene–bipyridyl polymer with bis(2,2′‐bipyridyl)dichlororuthenium (II) [Ru(bpy)2Cl2] afforded a ruthenium–polymer complex. A cyclic voltammogram of the complex showed broad redox peaks, which indicated electronic interaction between the dithiafulvene and tris(bipyridyl) ruthenium complex. The dithiafulvene–bipyridyl polymer formed CT complexes with 7,7,8,8‐tetracycanoquinodimethane (TCNQ) in dimethyl sulfoxide. The UV–vis absorption indicated that the resulting CT complex contained anion radical of TCNQ and partially charge‐transferred TCNQ. The polymer showed an unusually high electrical conductivity of 3.1 × 10?4 S/cm in its nondoped state due to the effective donor–acceptor interaction between the bipyridine unit and the dithiafulvene unit. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4083–4090, 2001  相似文献   

16.
The diorganotin(IV) complexes of 5‐[(E)‐2‐aryldiazen‐1‐yl]‐2‐hydroxybenzoic acid are of interest because of their structural diversity in the crystalline state and their interesting biological activity. The structures of dimethylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV), [Sn(CH3)2(C14H11N2O3)2], and di‐n‐butylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV) benzene hemisolvate, [Sn(C4H9)2(C14H11N2O3)2]·0.5C6H6, exhibit the usual skew‐trapezoidal bipyramidal coordination geometry observed for related complexes of this class. Each structure has two independent molecules of the SnIV complex in the asymmetric unit. In the dimethyltin structure, intermolecular O—H…O hydrogen bonds and a very weak Sn…O interaction link the independent molecules into dimers. The planar carboxylate ligands lend themselves to π–π stacking interactions and the diversity of supramolecular structural motifs formed by these interactions has been examined in detail for these two structures and four closely related analogues. While there are some recurring basic motifs amongst the observed stacking arrangements, such as dimers and step‐like chains, variations through longitudinal slipping and inversion of the direction of the overlay add complexity. The π–π stacking motifs in the two title complexes are combinations of some of those observed in the other structures and are the most complex of the structures examined.  相似文献   

17.
Tropolone long has served as a model system for unraveling the ubiquitous phenomena of proton transfer and hydrogen bonding. This molecule, which juxtaposes ketonic, hydroxylic, and aromatic functionalities in a framework of minimal complexity, also has provided a versatile platform for investigating the synergism among competing intermolecular forces, including those generated by hydrogen bonding and aryl coupling. Small members of the troponoid family typically produce crystals that are stabilized strongly by pervasive π–π, C—H…π, or ion–π interactions. The organic salt (TrOH·iBA) formed by a facile proton‐transfer reaction between tropolone (TrOH) and isobutylamine (iBA), namely isobutylammonium 7‐oxocyclohepta‐1,3,5‐trien‐1‐olate, C4H12N+·C7H5O2, has been investigated by X‐ray crystallography, with complementary quantum‐chemical and statistical‐database analyses serving to elucidate the nature of attendant intermolecular interactions and their synergistic effects upon lattice‐packing phenomena. The crystal structure deduced from low‐temperature diffraction measurements displays extensive hydrogen‐bonding networks, yet shows little evidence of the aryl forces (viz. π–π, C—H…π, and ion–π interactions) that typically dominate this class of compounds. Density functional calculations performed with and without the imposition of periodic boundary conditions (the latter entailing isolated subunits) documented the specificity and directionality of noncovalent interactions occurring between the proton‐donating and proton‐accepting sites of TrOH and iBA, as well as the absence of aromatic coupling mediated by the seven‐membered ring of TrOH. A statistical comparison of the structural parameters extracted for key hydrogen‐bond linkages to those reported for 44 previously known crystals that support similar binding motifs revealed TrOH·iBA to possess the shortest donor–acceptor distances of any troponoid‐based complex, combined with unambiguous signatures of enhanced proton‐delocalization processes that putatively stabilize the corresponding crystalline lattice and facilitate its surprisingly rapid formation under ambient conditions.  相似文献   

18.
The structures of 1‐methoxy‐4‐[(phenylselanyl)methyl]benzene, C14H14OSe, (1), and 1‐nitro‐4‐[(phenylselanyl)methyl]benzene, C13H11NO2Se, (2), were determined at 130 K. The two structures, which differ in that (1) contains an electron‐rich aromatic ring and (2) contains an electron‐deficient aromatic ring, both adopt conformations which allow for σC—Se–π hyperconjugation. However, although there are significant differences in the 77Se chemical shifts for these two compounds, they do not display significantly different H2C—Se or H2C—Car bond lengths, suggesting that the effects of σC—Se–π hyperconjugation in (1) and (2) are not strong enough to be manifested in measurable differences in the structural parameters.  相似文献   

19.
Radical cations of a heptathienoacene α,β‐substituted with four n‐decyl side groups (D4T7 . +) form exceptionally stable π‐dimer dications already at ambient temperature (Chem. Comm. 2011 , 47, 12622). This extraordinary π‐dimerization process is investigated here with a focus on the ultimate [D4T7 . +]2 π‐dimer dication and yet‐unreported transitory species formed during and after the oxidation. To this end, we use a joint experimental and theoretical approach that combines cyclic voltammetry, in situ spectrochemistry and spectroelectrochemistry, EPR spectroscopy, and DFT calculations. The impact of temperature, thienoacene concentration, and the nature and concentration of counteranions on the π‐dimerization process is also investigated in detail. Two different transitory species were detected in the course of the one‐electron oxidation: 1) a different transient conformation of the ultimate [D4T7 . +]2 π‐dimer dications, the stability of which is strongly affected by the applied experimental conditions, and 2) intermediate [D4T7]2 . + π‐dimer radical cations formed prior to the fully oxidized [D4T7]2 . + π‐dimer dications. Thus, this comprehensive work demonstrates the formation of peculiar supramolecular species of heptathienoacene radical cations, the stability, nature, and structure of which have been successfully analyzed. We therefore believe that this study leads to a deeper fundamental understanding of the mechanism of dimer formation between conjugated aromatic systems.  相似文献   

20.
Photoinduced hydroxylation of neat deaerated benzene to phenol occurred under visible‐light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ), which acts as a super photooxidant in the presence of water. Photocatalytic solvent‐free hydroxylation of benzene derivatives with electron‐withdrawing substituents such as benzonitrile, nitrobenzene, and trifluoromethylbenzene used as neat solvents has been achieved for the first time by using DDQ as a super photooxidant to yield the corresponding phenol derivatives and 2,3‐dichloro‐5,6‐dicyanohydroquinone (DDQH2) in the presence of water under deaerated conditions. In the presence of dioxygen and tert‐butyl nitrite, the photocatalytic hydroxylation of neat benzene occurred with DDQ as a photocatalyst to produce phenol. The photocatalytic reactions are initiated by oxidation of benzene derivatives with the singlet and triplet excited states of DDQ to form the corresponding radical cations, which associate with benzene derivatives to produce the dimer radical cations, which were detected by the femto‐ and nanosecond laser flash photolysis measurements to clarify the photocatalytic reaction mechanisms. Radical cations of benzene derivatives react with water to yield the OH‐adduct radicals. On the other hand, DDQ . ? produced by the photoinduced electron transfer from benzene derivatives reacts with the OH‐adduct radicals to yield the corresponding phenol derivatives and DDQH2. DDQ is recovered by the reaction of DDQH2 with tert‐butyl nitrite when DDQ acts as a photocatalyst for the hydroxylation of benzene derivatives by dioxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号