首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic study of the behavior of several common mobile‐phase volume markers using traditional and polar‐group‐containing reversed‐phase stationary phases is presented. Examined mobile‐phase volume markers include two neutral molecules, uracil and thiourea, concentrated (0.10 M) and dilute (0.0001 M) KNO3, and D2O. Mobile‐phase volumes are examined over the entire reversed‐phase mobile‐phase range of 100% water to 100% methanol or acetonitrile. The behavior of these mobile‐phase volume markers is compared with a maximum theoretical value (i.e. the void volume), as determined by pycnometry. The data suggest that: (i) uracil begins to fail as a mobile‐phase volume marker in mobile phases below about 40% strong solvent for polar group containing phases; (ii) in nearly all cases, the mobile‐phase volume measured dynamically is smaller than the pycnometric void volume; (iii) a significant dependence of measured mobile‐phase volume on salt concentration is seen on the polar endcapped phase, which is not observed on the traditional and embedded polar group phase; and (iv) D2O does not work well as a mobile‐phase volume marker with polar‐group‐containing phases, possibly due to interaction with the stationary phase polar group.  相似文献   

2.
The influence of the mobile-phase composition on the retention of eight model substances in different RP-HPLC systems with a C(30) alkyl bonded stationary phase has been studied. The aim of this study was to compare the performance of four valuable retention models assuming the partition and adsorption mechanism of retention. All the models were verified for different experimental data by four criteria: the sum of squared differences between the experimental and theoretical data; the approximation of the standard deviation; the Fisher test; and the F-test ratio.  相似文献   

3.
Separation of veterinary drug alaptide ((S)-8-methyl-6,9-diazaspiro(4,5)decane-7,10-dione) from a chiral impurity (R-enantiomer) was developed. Five chiral columns (three amylose and two cellulose type) were evaluated in a reversed-phase system. Three of them offered satisfactory enantiomeric resolution. Finally, three methods were validated and proved to be applicable for the determination of a chiral impurity content below 0.1% (method A: 3-AmyCoat column, tris-[3,5-dimethylphenyl]carbamoyl amylose; mobile phase: water/methanol/propan-2-ol/butan-2-ol=75:20:3.5:1.5 v/v, flow rate: 0.40 mL/min; column temperature: 30 °C; method B: Chiralpak AS-3R, tris-[1-phenylethyl]carbamoyl amylose; water/acetonitrile=80:20 v/v, 0.40 mL/min; 40 °C; method C: Chiralcel OZ-3R, tris-[3-chloro-4-methylphenyl] carbamoyl cellulose; water/acetonitrile=80:20 v/v, 0.40 mL/min; 40 °C). Some decrease in efficiency with repeated sample injections was observed for the 3-AmyCoat column. The resistance to mass transfer in the stationary phase increased probably due to the change in chiral selector conformation. This effect was considerably suppressed by propan-2-ol or to a greater extent by butan-2-ol added to a mobile phase. Simple regeneration was also suggested to recover efficiency of the column.  相似文献   

4.
Protein retention is very sensitive to the change of solvent composition in reversed‐phase liquid chromatography for so called “on–off” mechanism, leading to difficulty in mobile phase optimization. In this study, a novel 3‐chloropropyl trichlorosilane ligand bonded column was prepared for protein separation. The differences in retention characteristics between the 3‐chloropropyl trichlorosilane ligand bonded column and n‐alkyl chain modified (C2, C4, C8) stationary phases were elucidated by the retention equation . Retention parameters (a and c) of nine standard proteins with different molecular weights were calculated by using homemade software. Results showed that retention times of nine proteins were similar on four columns, but the 3‐chloropropyl trichlorosilane ligand bonded column obtained the lowest retention parameter values of larger proteins. It meant that their retention behavior affected by acetonitrile concentration would be different due to lower |c| values. More specifically, protein elution windows were broader, and retentions were less sensitive to the change of acetonitrile concentration on the 3‐chloropropyl trichlorosilane ligand bonded column than that on other columns. Meanwhile, the 3‐chloropropyl trichlorosilane ligand bonded column displayed distinctive selectivity for some proteins. Our results indicated that stationary phase with polar ligand provided potential solutions to the “on–off” problem and optimization in protein separation.  相似文献   

5.
In comparison to conventional C18 phases, C30 phases exhibit superior shape selectivity for the separation of isomers of carotenoids and vitamins. To obtain this enhanced recognition capability the HPLC separation must be performed at a well-defined temperature. At higher temperatures the capability of differentiating between different stereochemical isomers is lost, resulting in peak coelution. This separation behaviour is primarily dependent upon the organisation of the C30 alkyl chains on the silica surface which can be visualised as two domains, the more ordered domain containing relatively rigid n-alkyl groups with trans conformations and the less ordered environment containing more flexible n-alkyl groups with gauche conformations. The ratio between trans vs. gauche conformations of the n-alkyl groups directs the shape selectivity of the C30 phase. The temperature-dependent interconversion of trans to gauche conformations can be monitored by temperature-dependent solid-state nuclear magnetic resonance (NMR) and suspended-state NMR measurements and visualised by molecular modelling calculations. Thus a direct correlation between chromatographic and physicochemical properties of C30 bonded phases is possible.  相似文献   

6.
7.
Unbonded silicon oxynitride and silica high‐performance liquid chromatography stationary phases have been evaluated and compared for the separation of basic compounds of differing molecular weight, pKa, and log D using aqueous/organic mobile phases. The influences of percentage of organic modifier, buffer pH, and concentration in the mobile phase on base retention were investigated on unbonded silicon oxynitride and silica phases. The results confirmed that unbonded silicon oxynitride and silica phases demonstrated excellent separation performance for model basic compounds and both the unbonded phases examined possessed a hydrophobic/adsorption and ion‐exchange character. The silicon oxynitride stationary phase exhibited high hydrophilicity compared with silica with a reversed‐phase mobile phase. An ion‐exclusion‐type mechanism becomes predominant for the separation of three aimed bases on the silicon oxynitride column at pH 2.8. Different from silicon oxynitride stationary phase, no obvious change for the retention time of three model bases on silica stationary phase at pH 2.8 can be observed.  相似文献   

8.
The understanding of the retention behavior of large molecules is an area of interest in liquid chromatography. Resorcinarene‐based cavitands are cavity‐shaped cyclic oligomers that can create host–guest interactions. We have investigated the chromatographic behavior of two types of cyclic tetramers as analytes in high‐performance liquid chromatography. The experiments were performed at four different temperatures (15, 25, 35, 45°C) on two types of reversed stationary phases (C8 and C18) from two different manufacturers. We have found a huge difference between the retention of resorcinarenes and cavitands. In some cases, the retention factor of cavitands was even a hundred times larger than the retention factor of resorcinarenes. The retention of methylated derivates was two to four times larger compared to that of demethylated compounds on every column. The opposite retention behavior of the resorcinarenes and cavitands on the two types of stationary phases showed well the difference of the selectivity of the XTerra and BDS Hypersil columns. The retention mechanism was studied by the thermodynamic parameters calculated from the van't Hoff equation.  相似文献   

9.
Bromoacetate‐substituted [3‐(2‐O‐β‐cyclodextrin)‐2‐hydroxypropoxy]propylsilyl‐appended silica particles (BACD‐HPS), an important and useful synthetic intermediate for preparation of novel types of macrocycles‐capped β‐CD‐bonded silica particles including crown ether/cyclam/calix[4]arene‐capped β‐CD‐bonded silica particles, have been prepared and used as chiral stationary phase for HPLC. This synthetic stationary phase is characterized by means of elemental analysis. For the first time, the chromatographic behavior of BACD‐HPS was systematically evaluated with several disubstituted benzenes and some chiral drug compounds under both normal and RP conditions in HPLC. The results show that BACD‐HPS has excellent selectivity for the separation of aromatic positional isomers and chiral isomers of some drug compounds when used as stationary phase in HPLC.  相似文献   

10.
Poly(l ‐lactic acid) is a linear aliphatic thermoplastic polyester that can be produced from renewable resources. A poly(l ‐lactic acid)‐modified silica stationary phase was newly prepared by amide bond reaction between amino groups on aminopropyl silica and carboxylic acid groups at the end of the poly(l ‐lactic acid) chain. The poly(l ‐lactic acid)‐silica column was characterized in reversed‐phase liquid chromatography and hydrophilic interaction liquid chromatography with the use of different mobile phase compositions. The poly(l ‐lactic acid)‐silica column was found to work in both modes, and the retention of test compounds depending on acetonitrile content exhibited “U‐shaped” curves, which was an indicator of reversed‐phase liquid chromatography/hydrophilic interaction liquid chromatography mixed‐mode retention behavior. In addition, carbonyl groups included into the poly(l ‐lactic acid) backbone work as an electron‐accepting group toward a polycyclic aromatic hydrocarbon and provide π–π interactions.  相似文献   

11.
The stereoisomers of 1,2,3,4‐tetrahydroisoquinoline amino alcohol analogues and derivatives thereof were separated in normal‐phase mode on chiral stationary phases based on preprepared silica coated with cellulose tris‐(3,5‐dimethylphenyl carbamate), cellulose tris‐(3‐chloro‐4‐methylphenyl carbamate), cellulose tris‐(4‐methylbenzoate) or cellulose tris‐(4‐chloro‐3‐methylphenyl carbamate). On all the investigated chiral columns, the retention and the enantioseparation were influenced by the nature and the concentrations of the mobile phase components and additives, and also the temperature. Experiments were performed in the temperature range 10–50°C. Thermodynamic parameters were calculated from plots of lnα vs 1/T. On these polysaccharide‐based chiral columns, both enthalpy‐driven separations and entropy‐controlled enantioseparations were observed. The latter was advantageous with regard to the shorter retention and greater selectivity at high temperature. The sequence of elution of the stereoisomers was determined in all cases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A dicationic imidazolium ionic liquid modified silica stationary phase was prepared and evaluated by reversed‐phase/anion‐exchange mixed‐mode chromatography. Model compounds (polycyclic aromatic hydrocarbons and anilines) were separated well on the column by reversed‐phase chromatography; inorganic anions (bromate, bromide, nitrate, iodide, and thiocyanate), and organic anions (p‐aminobenzoic acid, p‐anilinesulfonic acid, sodium benzoate, pathalic acid, and salicylic acid) were also separated individually by anion‐exchange chromatography. Based on the multiple sites of the stationary phase, the column could separate 14 solutes containing the above series of analytes in one run. The dicationic imidazolium ionic liquid modified silica can interact with hydrophobic analytes by the hydrophobic C6 chain; it can enhance selectivity to aromatic compounds by imidazolium groups; and it also provided anion‐exchange and electrostatic interactions with ionic solutes. Compared with a monocationic ionic liquid functionalized stationary phase, the new stationary phase represented enhanced selectivity owing to more interaction sites.  相似文献   

13.
Enantioresolution of the calcimimetic drug (R,S)‐Cinacalcet was achieved using both indirect and direct approaches. Six chiral variants of Marfey's reagent having l ‐Ala‐NH2, l ‐Phe‐NH2, l ‐Val‐NH2, l ‐Leu‐NH2, l ‐Met‐NH2 and d ‐Phg‐NH2 as chiral auxiliaries were used as derivatizing reagents under microwave irradiation. Derivatization conditions were optimized. Reversed‐phase high‐performance liquid chromatography was successful using binary mixtures of aqueous trifluoroacetic acid and acetonitrile for separation of diastereomeric pairs with detection at 340 nm. Thin silica gel layers impregnated with optically pure l ‐histidine and l ‐arginine were used for direct resolution of enantiomers. The limit of detection was found to be 60 pmol in HPLC while in TLC it was found to be in the range of 0.26–0.28 µg for each enantiomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A silica‐based reversed‐phase stationary phase bonding with phenyl and tetrazole groups was synthesized by thiol‐epoxy ring opening reaction. The bonded groups could not only provide hydrophobic interaction, but also π–π, hydrogen bonding, electrostatic interactions, and so on. The results of characterization with elemental analysis and solid‐state 13C cross‐polarization magic‐angle‐spinning NMR spectroscopy indicated the successful preparation of phenyl/tetrazole sulfoether bonded stationary phase. Chromatographic evaluation revealed that phenyl/tetrazole sulfoether bonded stationary phase behaved well under the reversed‐phase mode. The column parameters (H, S*, A, B, and C) showed different selectivity compared with some typical commercial columns, and it was validated by the separation of estrogen, ginsenoside, alkaloid samples. Based on the different selectivity between phenyl/tetrazole sulfoether bonded stationary phase and C18 columns, phenyl/tetrazole sulfoether bonded stationary phase also showed potential to construct a 2D reversed‐phase liquid chromatography system with C18. And it was verified by the separation of corydalis tuber and curcuma zedoary extracts.  相似文献   

15.
The application of a chiral ligand‐exchange column for the direct high‐performance liquid chromatographic enantioseparation of unusual β‐amino acids with a sodium N‐((R)‐2‐hydroxy‐1‐phenylethyl)‐N‐undecylaminoacetate‐Cu(II) complex as chiral selector is reported. The investigated amino acids were isoxazoline‐fused 2‐aminocyclopentanecarboxylic acid analogs. The chromatographic conditions were varied to achieve optimal separation. The effects of temperature were studied at constant mobile phase compositions in the temperature range 5–45°C, and thermodynamic parameters were calculated from plots of lnk or lnα versus 1/T. Δ(ΔH°) ranged from –2.3 to 2.2 kJ/mol, Δ(ΔS°) from –3.0 to 7.8 J mol?1 K?1 and –Δ(ΔG°) from 0.1 to 1.7 kJ/mol, and both enthalpy‐ and entropy‐controlled enantioseparations were observed. The latter was advantageous with regard to the shorter retention and greater selectivity at high temperature. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. The sequence of elution of the enantiomers was determined in all cases.  相似文献   

16.
A simple and environmentally friendly reversed‐phase high‐performance liquid chromatography method for the separation of the enantiomers of lansoprazole has been developed. The chromatographic resolution was carried out on the cellulose‐based Chiralpak IC‐3 chiral stationary phase using a green and low‐toxicity ethanol‐aqueous mode. The effects of water content in the mobile phase and column temperature on the retention of the enantiomers of lansoprazole and its chiral and achiral related substances have been carefully investigated. A mixed‐mode hydrophilic interaction liquid chromatography and reversed‐phase retention mechanism operating on the IC‐3 chiral stationary phase allowed us to achieve simultaneous enantioselective and chemoselective separations in water‐rich conditions. The enantiomers of lansoprazole were baseline resolved with a mobile phase consisting of ethanol/water 50:50 without any interference coming from chiral and achiral impurities within 10 min.  相似文献   

17.
Ground porous silica monolith particles with an average particle size of 2.34 μm and large pores (363 Å) exhibiting excellent chromatographic performance have been synthesized on a relatively large scale by a sophisticated sol–gel procedure. The particle size distribution was rather broad, and the d(0.1)/d(0.9) ratio was 0.14. The resultant silica monolith particles were chemically modified with chlorodimethyloctadecylsilane and end‐capped with a mixture of hexamethyldisilazane and chlorotrimethylsilane. Very good separation efficiency (185 000/m) and chromatographic resolution were achieved when the C18‐bound phase was evaluated for a test mixture of five benzene derivatives after packing in a stainless‐steel column (1.0 mm × 150 mm). The optimized elution conditions were found to be 70:30 v/v acetonitrile/water with 0.1% trifluoroacetic acid at a flow rate of 25 μL/min. The column was also evaluated for fast analysis at a flow rate of 100 μL/min, and all the five analytes were eluted within 3.5 min with reasonable efficiency (ca. 60 000/m) and resolution. The strategy of using particles with reduced particle size and large pores (363 Å) combined with C18 modification in addition to partial‐monolithic architecture has resulted in a useful stationary phase (C18‐bound silica monolith particles) of low production cost showing excellent chromatographic performance.  相似文献   

18.
Several mobile phase additives (i.e., organic acids and their ammonium salts) were used to modulate the chromatographic retention of cyanocobalamin and its cis‐diaminemonochloroplatinum(II) conjugate, depending on the specific nature of the stationary phase. Regardless of the mobile phase additive, the positively charged cyanocobalamin‐cis‐diaminemonochloroplatinum(II) conjugate was systematically less retained than cyanocobalamin on a conventional octadecyl‐silica column. In contrast, the amide‐embedded C18 column exhibited a progressive increase in the conjugate retention time upon changing the mobile phase additive from organic (acetic, formic and trifluoroacetic) acids to ammonium salts, ultimately leading to an inversion of the elution order. This change of retention was interpreted by invoking the interplay between hydrophobic interactions, hydrogen bonding between the conjugate and the polar amide groups and the ion‐pairing ability of the lyophilic counterions, whereby the acetate anion was found to be the most suitable to control the solute retention.  相似文献   

19.
The stereoisomers of five fluorinated cyclic β3‐amino acid derivatives and their nonfluorinated counterparts were separated on chiral stationary phases containing as chiral selectors cellulose tris‐(3,5‐dimethylphenyl carbamate), cellulose tris‐(3‐chloro‐4‐methylphenyl carbamate), cellulose tris‐(4‐methylbenzoate), cellulose tris‐(4‐chloro‐3‐methylphenyl carbamate), amylose tris‐(3,5‐dimethylphenyl carbamate) or amylose tris‐(5‐chloro‐2‐methylphenyl carbamate). The enantioseparations were carried out in normal‐phase mode with n‐hexane/alcohol/alkylamine mobile phases in the temperature range 5–40 °C. The effects of the mobile phase composition, the nature and concentration of the alcohol and alkylamine additives, the structures of the analytes and temperature on the separations were investigated. Thermodynamic parameters were calculated from plots of ln α vs. 1/T. The Δ(ΔH°) values ranged between ?5.0 and +1.6 kJ/mol, while Δ(ΔS°) varied between ?12.6 and +5.7 J/mol/K. The enantioseparation was enthalpically controlled, the retention factor and the separation factor decreasing with increasing temperature, but entropically controlled separation was also observed. The elution sequence was determined for all of the investigated analytes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A new stationary phase for high‐performance liquid chromatography was prepared by covalently bonding a heteroatom‐bridged cyclophane onto silica gel using 3‐aminopropyltriethoxysilane as the coupling reagent. The structure of the new material was characterized by infrared spectroscopy, elemental analysis, and thermogravimetric analysis. The linear solvation energy relationship method was successfully employed to evaluate the new phase with a set of 25 solutes, and compared with octadecylsilyl and ptert‐butyl‐calix[4]arene bonded stationary phases. The retention characteristics of the new phase are similar to the octadecylsilyl and conventional calixarene phases, and it also has distinctive features. In addition, the chromatographic behavior of the phase was illustrated by eluting alkylbenzenes and inorganic anions in the reversed‐phase mode and anion‐exchange mode, respectively. Thus, multi‐interaction mechanisms and mixed‐mode separation of the new phase can very likely guarantee its promising application in the analysis of complex samples. The column has been successfully employed for the analysis of triazines in milk, and it is demonstrated to be a competitive alternative analytical method for the determination of triazine herbicide residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号