首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retro‐carbopalladation of aldimines in the presence of a suitable β‐hydrogen atom has been observed in the Pd‐catalyzed homocoupling reactions of o‐bromobenzylamines, providing an expeditious synthetic route to 5,6‐dihydrophenanthridine derivatives. Furthermore, a highly enantioselective synthesis of 6‐aryl‐substituted 5,6‐dihydrophenanthridines was achieved in a one‐pot manner by taking advantage of Rh and Pd catalysis.  相似文献   

2.
A new series of 2,3‐disubstituted quinazolin‐4(3H)‐one derivatives was synthesized by nucleophilic attack at C(2) of the corresponding key starting material 2‐propyl‐4H‐3,1‐benzoxazin‐4‐one (Scheme 2). The reaction proceeded via amidinium salt formation (Scheme 3) rather than via an N‐acylanthranilimide. The structure of the prepared compounds were elucidated by physical and spectral data like FT‐IR, 1H‐NMR, and mass spectroscopy.  相似文献   

3.
The reaction of (+)‐car‐2‐ene ( 4 ) with chlorosulfonyl isocyanate (=sulfuryl chloride isocyanate; ClSO2NCO) led to the tricyclic lactams 6 and 8 corresponding to the initial formation both of the tertiary carbenium and α‐cyclopropylcarbenium ions (Scheme 2). A number of optically active derivatives of β‐amino acids which are promising compounds for further use in asymmetric synthesis were synthesized from the lactams (see 16, 17 , and 19 – 21 in Scheme 3).  相似文献   

4.
The reaction of aldimines with α‐(hydroxyimino) ketones of type 10 (1,2‐diketone monooximes) was used to prepare 2‐unsubstituted imidazole 3‐oxides 11 bearing an alkanol chain at N(1) (Scheme 2, Table 1). These products were transformed into the corresponding 2H‐imidazol‐2‐ones 13 and 2H‐imidazole‐2‐thiones 14 by treatment with Ac2O and 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione, respectively (Scheme 3). The three‐component reaction of 10 , formaldehyde, and an alkane‐1,ω‐diamine 15 gave the bis[1H‐imidazole 3‐oxides] 16 (Scheme 4, Table 2). With Ac2O, 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione or Raney‐Ni, the latter reacted to give the corresponding bis[2H‐imidazol‐2‐ones] 19 and 20 , bis[2H‐imidazol‐2‐thione] 21 , and bis[imidazole] 22 , respectively (Schemes 5 and 6). The structures of 11a and 16b were established by X‐ray crystallography.  相似文献   

5.
Title compounds bearing substituents on C(2), C(6) and C(8) were prepared from a newly synthesized pyrimidine derivative 11. The new pyrimidine 11 was generated from compound 2 through two different synthetic schemes. In one pathway, compound 2 was nitrosated, reduced and alkylated to produce com pounds 9 , 10 and 11 respectively (Scheme). In an alternate route using compound 2 as the starting material, a coupling reaction using the diazonium salt derived from p‐methylaniline afforded the azo derivative 7 , which was subsequently alkylated and reductively cleaved to form compounds 8 and 11 respectively (See Scheme). Compound 11 was annulated to the corresponding hypoxanthine derivatives 12–14 ; compounds 12 and 13 were chlorinated with phosphorus oxychloride, then reacted with amines to yield compound 17 and 20 respectively. Compounds 21 , 22 and 23 were obtained by oxidation of the corresponding sulfide as depicted in Scheme. Alkylation of the thiol function of 1 gave a mixture of 3 and 4. Compound 3 was chlo rinated to 5. Nitration of 5 resulted in electrophilic aromatic substitution of the aryl ring and concomitant oxidation of the sulfide to the sulfoxide, producing 6.  相似文献   

6.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

7.
The reduction of heptalene diester 1 with diisobutylaluminium hydride (DIBAH) in THF gave a mixture of heptalene‐1,2‐dimethanol 2a and its double‐bond‐shift (DBS) isomer 2b (Scheme 3). Both products can be isolated by column chromatography on silica gel. The subsequent chlorination of 2a or 2b with PCl5 in CH2Cl2 led to a mixture of 1,2‐bis(chloromethyl)heptalene 3a and its DBS isomer 3b . After a prolonged chromatographic separation, both products 3a and 3b were obtained in pure form. They crystallized smoothly from hexane/Et2O 7 : 1 at low temperature, and their structures were determined by X‐ray crystal‐structure analysis (Figs. 1 and 2). The nucleophilic exchange of the Cl substituents of 3a or 3b by diphenylphosphino groups was easily achieved with excess of (diphenylphospino)lithium (=lithium diphenylphosphanide) in THF at 0° (Scheme 4). However, the purification of 4a / 4b was very difficult since these bis‐phosphines decomposed on column chromatography on silica gel and were converted mostly by oxidation by air to bis(phosphine oxides) 5a and 5b . Both 5a and 5b were also obtained in pure form by reaction of 3a or 3b with (diphenylphosphinyl)lithium (=lithium oxidodiphenylphospanide) in THF, followed by column chromatography on silica gel with Et2O. Carboxaldehydes 7a and 7b were synthesized by a disproportionation reaction of the dimethanol mixture 2a / 2b with catalytic amounts of TsOH. The subsequent decarbonylation of both carboxaldehydes with tris(triphenylphosphine)rhodium(1+) chloride yielded heptalene 8 in a quantitative yield. The reaction of a thermal‐equilibrium mixture 3a / 3b with the borane adduct of (diphenylphosphino)lithium in THF at 0° gave 6a and 6b in yields of 5 and 15%, respectively (Scheme 4). However, heating 6a or 6b in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) in toluene, generated both bis‐phosphine 4a and its DBS isomer 4b which could not be separated. The attempt at a conversion of 3a or 3b into bis‐phosphines 4a or 4b by treatment with t‐BuLi and Ph2PCl also failed completely. Thus, we returned to investigate the antipodes of the dimethanols 2a, 2b , and of 8 that can be separated on an HPLC Chiralcel‐OD column. The CD spectra of optically pure (M)‐ and (P)‐configurated heptalenes 2a, 2b , and 8 were measured (Figs. 4, 5, and 9).  相似文献   

8.
The reaction of S‐methylisothiosemicarbazide hydroiodide (=S‐methyl hydrazinecarboximidothioate hydroiodide; 1 ), prepared from thiosemicarbazide by treatment with MeI in EtOH, and aryl isoselenocyanates 5 in CH2Cl2 affords 3H‐1,2,4‐triazole‐3‐selone derivatives 7 in good yield (Scheme 2, Table 1). During attempted crystallization, these products undergo an oxidative dimerization to give the corresponding bis(4H‐1,2,4‐triazol‐3‐yl) diselenides 11 (Scheme 3). The structure of 11a was established by X‐ray crystallography.  相似文献   

9.
The 3‐allyl‐2‐methylquinazolin‐4(3H)‐one ( 1 ), a model functionalized terminal olefin, was submitted to hydroformylation and reductive amination under optimized reaction conditions. The catalytic carbonylation of 1 in the presence of Rh catalysts complexed with phosphorus ligands under different reaction conditions afforded a mixture of 2‐methyl‐4‐oxoquinazoline‐3(4H)‐butanal ( 2 ) and α,2‐dimethyl‐4‐oxoquinazoline‐3(4H)‐propanal ( 3 ) as products of ‘linear’ and ‘branched’ hydroformylation, respectively (Scheme 2). The hydroaminomethylation of quinazolinone 1 with arylhydrazine derivatives gave the expected mixture of [(arylhydrazinyl)alkyl]quinazolinones 5 and 6 , besides a small amount of 2 and 3 (Scheme 3). The tandem hydroformylation/reductive amination reaction of 1 with different amines gave the quinazolinone derivatives 7 – 10 . Compound 10 was used to prepare the chalcones 11a and 11b and pyrazoloquinazolinones 12a and 12b (Scheme 4).  相似文献   

10.
A convenient approach to 2,2′‐(1,4‐phenylene)bis[1‐acetyl‐1,2‐dihydro‐4H‐3,1‐benzoxazin‐4‐one] derivatives 4 was explored employing the one‐pot condensation of anthranilic acids (=2‐aminobenzoic acids) 1 with terephthalaldehyde (=benzene‐1,4‐dicarboxaldehyde; 2 ) under ultrasound‐irradiation conditions (Scheme 1). The reactions proceeded smoothly in the presence of excess Ac2O in the absence of any other catalyst and solvent to afford the respective products in high yields.  相似文献   

11.
The reaction of dichlorido(cod)palladium(II) (cod = 1,5‐cyclooctadiene) with 2‐(benzylsulfanyl)aniline followed by heating in N,N‐dimethylformamide (DMF) produces the linear trinuclear Pd3 complex bis(μ2‐1,3‐benzothiazole‐2‐thiolato)bis[μ2‐2‐(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N‐dimethylformamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The molecule has symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer PdII atoms have a square‐planar geometry formed by an N,S‐chelating 2‐(benzylsulfanyl)anilinide ligand, a chloride ligand and the thiolate S atom of a bridging 1,3‐benzothiazole‐2‐thiolate ligand, while the central PdII core shows an all N‐coordinated square‐planar geometry. The geometry is perfectly planar within the PdN4 core and the N—Pd—N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3‐benzothiazole‐2‐thiolate ligands are only N‐coordinated to one Pd centre. The 1,3‐benzothiazole‐2‐thiolate ligands were formed in situ from 2‐(benzylsulfanyl)aniline.  相似文献   

12.
A facile synthetic approach was adopted towards the synthesis of benzo‐fused macrocyclic lactams 2a – 2g via the base‐catalyzed condensation reaction of 2,2′‐[alkanediylbis(oxy)]bis[benzaldehydes] 3a – 3c with N,N′‐substituted bis[2‐cyanoacetamide] derivatives 7a – 7c (Scheme 2). The latter compounds were obtained by the reaction of the appropriate diamines 6a – 6c with ethyl 2‐cyanoacetate ( 4 ). Attempts to prepare the oxaaza macrocycles 2 by alternative pathways were also investigated. The novel pyrazolo‐fused macrocycles 13a and 13b were obtained in 48 and 52% yield, respectively, upon treatment of 2d and 2g with NH2NH2?H2O at 100° (Scheme 4).  相似文献   

13.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

14.
The reaction of 1,2‐dihydro‐6‐(phenylamino)‐2‐thioxopyrimidin‐4(3H)one ( 16 ) with N‐arylhydrazonoyl halides 15 in CHCl3 in the presence of Et3N under reflux afforded the corresponding 1,2,4‐triazolo[4,3‐a]pyrimidin‐5‐ones of type 20 in good yields (Scheme 3). The structure of one of the derivatives, 20d , has been established by X‐ray crystallography. Conceivable reaction mechanisms are discussed in Schemes 3 and 4. The products of type 20 easily undergo reactions with electrophiles such as benzenediazonium chloride, chloroacetyl chloride, and NaNO2 in AcOH to give 6‐phenylazo, 6‐chloroacetyl, and 6‐nitroso derivatives 21, 23 , and 25 , respectively (Scheme 5).  相似文献   

15.
Treatment of symmetrically substituted maleic anhydrides (=furan‐2,5‐diones) 6 with lithium (phenylsulfonyl)methanide, followed by methylation of the adduct with MeI/K2CO3 in acetone, give the corresponding 4,5‐disubstituted 2‐methyl‐2‐(phenylsulfonyl)cyclopent‐4‐ene‐1,3‐diones 8 (Scheme 3). Reaction of the latter with lithium (phenylsulfonyl)methanide in THF (?78°) and then with 4 mol‐equiv. BuLi (?5° to r.t.) leads to 5,6‐disubstituted 4‐methyl‐2‐(phenylsulfonyl)benzene‐1,3‐diols 9 (Scheme 4).  相似文献   

16.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

17.
An effective route to novel 4‐(alkylamino)‐1‐(arylsulfonyl)‐3‐benzoyl‐1,5‐dihydro‐5‐hydroxy‐5‐phenyl‐2H‐pyrrol‐2‐ones 10 is described (Scheme 2). This involves the reaction of an enamine, derived from the addition of a primary amine 5 to 1,4‐diphenylbut‐2‐yne‐1,4‐dione, with an arenesulfonyl isocyanate 7 . Some of these pyrrolones 10 exhibit a dynamic NMR behavior in solution because of restricted rotation around the C? N bond resulting from conjugation of the side‐chain N‐atom with the adjacent α,β‐unsaturated ketone group, and two rotamers are in equilibrium with each other in solution ( 10 ? 11 ; Scheme 3). The structures of the highly functionalized compounds 10 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS), by elemental analyses, and, in the case of 10a , by X‐ray crystallography. A plausible mechanism for the reaction is proposed (Scheme 4).  相似文献   

18.
Biginelli compounds 1 were first brominated at Me? C(6) with 2,4,4,6‐tetrabromocyclohex‐2,5‐dien‐1‐one to give Br2CH? C(6) derivatives 2 . The hydrolysis of the 6‐(dibromomethyl) group of 2c to give the 6‐formyl derivative 3c in the presence of an expensive Ag salt followed by reaction with N2H4?H2O yielded tetrahydropyrimido[4,5‐d]pyridazine‐2,5(1H,3H)‐dione ( 4c ; Scheme 1). However, treatment of the 6‐(dibromomethyl) derivatives 2 directly with N2H4?H2O led to the fused heterocycles 4 in better overall yield (Schemes 1 and 2; Table).  相似文献   

19.
We hereby report the first preparation of the 5,6‐dihydro‐4H‐furo[2,3‐c]pyrrol‐4‐one ( 3 ) and its derivatives starting from methyl 3‐(methoxycarbonyl)furan‐2‐acetate ( 8 ). The ester functionality connected to the methylene group was regiospecifically converted to the desired monohydrazide 9 . Conversion of 9 into the acyl azide 10 followed by Curtius rearrangement gave the corresponding isocyanate derivative 11 (Scheme 2). Reaction of 11 with different nucleophiles produced urethane and urea derivatives (Scheme 3). Intramolecular cyclization reactions provided the target compounds (Scheme 5). Removal of the amine‐protecting group formed the title compound 3 .  相似文献   

20.
The preparation of three new chiral derivatives of DMPU (N,N′‐dimethylpropyleneurea) is described (Schemes 24); one type of derivative carries 1‐phenylethyl or 1‐cyclohexylethyl groups at the N‐atoms of the tetrahydropyrimidin‐2(1H)‐one ring ( 2 and 4 ), another type of derivative is substituted at C(4) and C(6) of the heterocyclic ring ( 7 ). The potential of these chiral Lewis bases as promoters in the regio‐ and/or enantioselective addition of 2‐(1,3‐dithianyl)lithium to cyclohex‐2‐en‐1‐one was explored; they are all unable to effect enantioselective addition; the derivatives with branched substituents at the N‐atoms do not shift the addition mode from 1,2 to 1,4, while the 3,4,5,6‐tetrahydro‐1,3,4,6‐tetramethylpyrimidin‐2(1H)‐one does (Scheme 5). The results provide useful information regarding the nature of the nucleophilic organolithium reagent: obviously, the steric hindrance to Li complexation on the CO O‐atom of the tetrahydropyrimidin‐2(1H)‐one by branched substituents at N‐atoms (cf. X‐ray crystal structure of 2 in the Fig.) prevents solvent‐separated‐ion‐pair (SSIP) formation; this was confirmed by PM3 and B3LYP/3‐21‐G(d)//PM3 calculations (Scheme 6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号