首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The addition of NO (0 to 400ppm) to mixtures of H2 (ca. 1%) and O2 (0.7 to 22%) has been studied over the temperature range 700 to 825 K, in a flow reactor at atmospheric pressure. The overall effect of NO is to promote the oxidation of H2 but high concentrations of O2 actually inhibit the NO-promoted oxidation of H2. A detailed kinetic mechanism has been constructed and found to describe the experimental observations. The promotion of the oxidation of H2 arises through the catalytic cycle The ability of R.34 to reactivate chains normally terminated by the formation of HO2 is a key feature of this system. The predictions are highly sensitive to the rate of the reaction R.5 and the rate constants for this reaction is the only adjustable parameter required in the model. The value of k5,N2 found to describe all the results has an absolute uncertainty <35%. The uncertainty relative to other important rate constants in the H2? O2 system is less than 10%. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The design, synthesis, and use of two new, stable, functionalized chain transfer agents (CTA's) containing OH and amine end groups for the RAFT polymerization is reported: 2‐hydroxyethoxy‐carbonylphenylmethyl dithiobenzoate and 2‐(2‐(tert‐butoxycarbonyl)ethylamino)‐2‐oxo‐1‐phenylethyl benzodithioate, respectively. The RAFT polymerization of n‐hexyl acrylate (HA) using those CTA's, were compared to several other functionalized dithiobenzoate esters reported in the literature containing COOH and Ester groups. The performances of the dithiobenzoates were compared in terms of kinetics and molecular weight distribution control. Good control in polymerization of n‐hexyl acrylate with a linear increase of Mn with conversion mantaining polydispersity indices (PDI) below 1.1 was obtained by use of the new functionalized CTA's developed and also by use of some other CTA's tested, to produce well‐defined linear polymers with one specific chain‐end functionality: ? OH, ? COOH or Amine. Using a postpolymerization reaction with functionalized azocompounds in a 5 to 1 ratio, α,ω‐telechelic polymers, with ? OH or ? COOH as functional group at the second end were obtained. By using this synthetic strategy α,ω‐homotelechelic and heterotelechelic polymers were readily prepared. The chemical availability of functional end‐groups in the telechelics was demonstrated by reaction with methacrylic anhydride. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3033–3051, 2010  相似文献   

3.
4.
An sp 2 /sp 3 get‐together : A novel and efficient method can be used to synthesize 3,3‐disubstitued oxindoles by the direct intramolecular oxidative coupling of an aryl C? H and a C? H center (see scheme; DMF=N,N‐dimethylformamide).

  相似文献   


5.
6.
The conformational stability of aminomethanol and its methylated derivatives has been investigated by means of ab initio methods in the gas phase and aqueous solution. Among the computational levels employed, HF/6‐31G**//HF/6‐31G** calculations correctly describe the conformational features of this series of compounds, and agree well with the results obtained using larger basis sets and including ZPE or electron correlation corrections. Calculated energies and geometries follow the known trends associated to the generalized anomeric effect. Thus, the most stable conformers exhibit preferences for the trans orientations of the Lp N C O and Lp O C N moieties. However, reverse anomeric effects are observed when a methyl group is bonded to the oxygen, because the Lp O C N unit prefers a gauche orientation (that is, trans Me O C N). The natural bond orbital (NBO) method was employed to explain the cited conformational preferences. According to the NBO results, trans arrangements are preferred because the stabilization due to charge delocalization is more important than electrostatic and steric contributions. This explanation agrees with the conclusions obtained by other independent procedures based on energy decomposition schemes. The NBO method was also used to explain the origin of the rotational barriers around the C O and C N bonds in terms of the balance between unfavorable hyperconjugation and electrostatic and steric effects. Changes in conformational stability caused by methylations in different molecular positions were also explained by the influence of the methyl groups on lone‐pair delocalization and on steric effects. Finally, the effect of solvation was studied by means of the ab initio PCM method, and the significant changes on relative energies found were analyzed. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 462–477, 2000  相似文献   

7.
Tuning the nature of the linker in a L∼BHR phosphinoborane compound led to the isolation of a ruthenium complex stabilized by two adjacent, δ‐C H and ε‐Bsp2 H, agostic interactions. Such a unique coordination mode stabilizes a 14‐electron “RuH2P2” fragment through connected σ‐bonds of different polarity, and affords selective B H, C H, and B C bond activation as illustrated by reactivity studies with H2 and boranes.  相似文献   

8.
C? H bonds are ubiquitous in organic compounds. It would, therefore, appear that direct functionalization of substrates by activation of C? H bonds would eliminate the multiple steps and limitations associated with the preparation of functionalized starting materials. Regioselectivity is an important issue because organic molecules can contain a wide variety of C? H bonds. The use of a directing group can largely overcome the issue of regiocontrol by allowing the catalyst to come into proximity with the targeted C? H bonds. A wide variety of functional groups have been evaluated for use as directing groups in the transformation of C? H bonds. In 2005, Daugulis reported the arylation of unactivated C(sp3)? H bonds by using 8‐aminoquinoline and picolinamide as bidentate directing groups, with Pd(OAc)2 as the catalyst. Encouraged by these promising results, a number of transformations of C? H bonds have since been developed by using systems based on bidentate directing groups. In this Review, recent advances in this area are discussed.  相似文献   

9.
Attachment of one electron to 1,2-diBeX-benzene and 1,2-diZnX-benzene derivatives leads to the formation of stronger Be Be and Zn Zn interaction compared to the neutral one. This is reflected in the dramatic shortening of the Be Be and Zn Zn distance. The formation of these 2-center-1-electron bonds have also been confirmed by topological survey of electron density using quantum theory of atoms in molecules and electron localization function. The formation of these bonds is expected to render stability to these radical anions. These radical anions are stable toward electron detachment and computed bond dissociation energy values are also significant.  相似文献   

10.
Quantum chemical calculations are used to estimate the equilibrium C? NO bond dissociation energies (BDEs) for eight X? NO molecule (X = CCl3, C6F5, CH3, CH3CH2, iC3H7, tC4H9, CH2CHCH2, and C6H5CH2). These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6‐31G** and 6‐311G** basis sets and the complete basis set (CBS‐QB3) method. The obtained results are compared with the available experimental results. It is demonstrated that B3P86/6‐31G** and CBS‐QB3 methods are accurate for computing the reliable BDEs for the X? NO molecule. Considering the inevitably computational cost of CBS‐QB3 method and the reliability of the B3P86 calculations, B3P86 method with 6‐31G** basis set may be more suitable to calculate the BDEs of the C? NO bond. The solvent effects on the BDEs of the C? NO bond are analyzed and it is shown that the C? NO BDEs in a vacuum computed by using B3PW91/6‐311G** method are the closest to the computed values in acetontrile and the average solvent effect is 1.48 kcal/mol. Subsequently, the substituent effects of the BDEs of the C? NO bond are further analyzed and it is found that electron denoting group stabilizes the radical and as a result BDE decreases; whereas electron withdrawing group stabilizes the group state of the molecule and thus increases the BDE from the parent molecule. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

11.
The effect of the methyl group on the cooperativity between three types of hydrogen bond (O H···O, C H···O, and O H···π) in cyclic complex involving an acetylene and two waters has been studied on the basis of high-level ab initio calculations. The total interaction energy of three hydrogen bonds increases as the number of methyl group in the complex increases. The binding distances of O H···π and O H···O hydrogen bonds shorten, while that of C H···O hydrogen bond elongates with increasing methyl group. This indicates that addition of methyl group leads to enhancement of O H···π and O H···O hydrogen bonds, and weakening of C H···O hydrogen bond, as also shown in frequency shift, chemical shifts, charge populations, and stabilization energies of orbital interactions. Although the presence of methyl group has a complicated effect on different type of hydrogen bond, the cooperativity of three hydrogen bonds increases in general with the addition of methyl group. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

12.
In hydrogen‐metal‐phosphorus (H M P) transition metal complexes (proposed as intermediates of H P bond addition to alkynes in the catalytic hydrophosphorylation, hydrophosphinylation, and hydrophospination reactions), alkyne insertion into the metal‐hydrogen bond was found much more facile compared to alkyne insertion into the metal‐phosphorus bond. The conclusion was verified for different metals (Pd, Ni, Pt, and Rh), ligands, and phosphorus groups at various theory levels (B3LYP, B3PW91, BLYP, MP2, and ONIOM). The relative reactivity of the metal complexes in the reaction with alkynes was estimated and decreased in the order of Ni>Pd>Rh>Pt. A trend in relative reactivity was established for various types of phosphorus groups: PR2>P(O)R2>P(O)(OR)2, which showed a decrease in rate upon increasing the number of the oxygen atoms attached to the phosphorus center.  相似文献   

13.
14.
The static first hyperpolarizability of the van der Waals CH4 N2 complex was calculated. The calculations were carried out in the approximation of the rigid interacting molecules for a broad range of intermolecular separations (R = 6–40 a0) and for six configurations at CCSD(T) level of theory using the correlation consistent aug-cc-pVTZ basis set with the basis set superposition error correction. It was shown that the long-range classical approximation, including the terms up to R−6, is in a good agreement with ab initio calculations for R > 11 a0. It was found out that for the family of most stable configurations of the complex, the first hyperpolarizability invariants practically do not change (the changes are less than 0.1%). Under forming the stable van der Waals CH4 N2 complex, the intensity and degree of depolarization of the hyper-Rayleigh scattering are noticeable decreased (by ∼10%) to be compared with the free CH4 and N2 molecules. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
This paper presents an application of the reaction class transition state theory (RC‐TST) to predict thermal rate constants for the hydrogen abstraction R? OH + H → R? O? + H2 reaction class, where R is an alkyl group. We have derived all parameters for the RC‐TST method for this reaction class from rate constants of 19 representative reactions, coupling with linear energy relationships (LERs) and the barrier height grouping (BHG) approach. Error analyses indicate that the RC‐TST/LER, where only reaction energy is needed, and RC‐TST/BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with satisfactory accuracy for combustion modeling. Specifically for this reaction class, the RC‐TST/LER method has less than 25% systematic errors in the predicted rate constants, whereas the RC‐TST/BHG method has less than 35% error when compared to explicit rate calculations. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 414–429, 2010  相似文献   

16.
Described herein is a manganese‐catalyzed dehydrogenative [4+2] annulation of N H imines and alkynes, a reaction providing highly atom‐economical access to diverse isoquinolines. This transformation represents the first example of manganese‐catalyzed C H activation of imines; the stoichiometric variant of the cyclomanganation was reported in 1971. The redox neutral reaction produces H2 as the major byproduct and eliminates the need for any oxidants, external ligands, or additives, thus standing out from known isoquinoline synthesis by transition‐metal‐catalyzed C H activation. Mechanistic studies revealed the five‐membered manganacycle and manganese hydride species as key reaction intermediates in the catalytic cycle.  相似文献   

17.
This paper describes the recent advances in the conceptually new bifunctional Ir and Ru catalysts for asymmetric catalytic reactions. These reactions include the enantioselective Michael addition of 1,3‐dicarbonyl compounds to cyclic enones and nitroalkenes, and the enantioselective direct amination of α‐cyanoacetates with diazoesters. The outcome of these reactions in terms of reactivity and selectivity was delicately influenced by the catalyst structures and the reaction conditions including the solvents used. Even with a 1 : 1 molar ratio of donors to acceptors, the reactions proceeded smoothly to give the corresponding chiral adducts with an excellent yield and enantiomeric excess (ee). Preliminary mechanistic studies showed that the key stage of the catalytic cycle is the interaction of the bifunctional catalyst with a pronucleophilic reagent that leads to stereoselective formation of C‐, O‐, or N‐bound complexes. The resulting protonated catalyst bearing metal‐bound nucleophiles readily reacts with electrophiles to provide C? C and C? N bond formation products in a highly stereoselective manner. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 106–123; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20172  相似文献   

18.
The first copper‐catalyzed intramolecular C(sp3) H and C(sp2) H oxidative amidation has been developed. Using a Cu(OAc)2 catalyst and an Ag2CO3 oxidant in dichloroethane solvent, C(sp3) H amidation proceeded at a terminal methyl group, as well as at the internal benzylic position of an alkyl chain. This reaction has a broad substrate scope, and various β‐lactams were obtained in excellent yield, even on gram scale. Use of CuCl2 and Ag2CO3 under an O2 atmosphere in dimethyl sulfoxide, however, leads to 2‐indolinone selectively by C(sp2) H amidation. Kinetic isotope effect (KIE) studies indicated that C H bond activation is the rate‐determining step. The 5‐methoxyquinolyl directing group could be removed by oxidation.  相似文献   

19.
20.
A novel method for the synthesis of dibenzo[b,f]imidazo[1,2-d][1,4]oxazepine derivatives was described via cascade Csp2 N and Csp2 O bond constructions. It was a crossed double Ullmann reactions using 4,5-diaryl-2-(2-hydroxylphenyl)-1H-imidazole as the double nucleophilic centers in the presence of Cs2CO3, while 1-bromo-2-iodobenzene was used as a substrate catalyzed by CuI and o-phenanthroline in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号