首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The kinetics and mechanism for the reaction of NH2 with HONO2 have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of this reaction has been computed by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on geometries optimized at the B3LYP/6‐311+G(3df, 2p) level. The reaction producing the primary products, NH3 + NO3, takes place via a precursor complex, H2N…HONO2 with an 8.4‐kcal/mol binding energy. The rate constants for major product channels in the temperature range 200–3000 K are predicted by variational transition state or variational Rice–Ramsperger–Kassel–Marcus theory. The results show that the reaction has a noticeable pressure dependence at T < 900 K. The total rate constants at 760 Torr Ar‐pressure can be represented by ktotal = 1.71 × 10?3 × T?3.85 exp(?96/T) cm3 molecule?1 s?1 at T = 200–550 K, 5.11 × 10?23 × T+3.22 exp(70/T) cm3 molecule?1 s?1 at T = 550–3000 K. The branching ratios of primary channels at 760 Torr Ar‐pressure are predicted: k1 producing NH3 + NO3 accounts for 1.00–0.99 in the temperature range of 200–3000 K and k2 + k3 producing H2NO + HONO accounts for less than 0.01 when temperature is more than 2600 K. The reverse reaction, NH3 + NO3 → NH2 + HONO2 shows relatively weak pressure dependence at P < 100 Torr and T < 600 K due to its precursor complex, NH3…O3N with a lower binding energy of 1.8 kcal/mol. The predicted rate constants can be represented by k?1 = 6.70 × 10?24 × T+3.58 exp(?850/T) cm3 molecule?1 s?1 at T = 200–3000 K and 760 Torr N2 pressure, where the predicted rate at T = 298 K, 2.8 × 10?16 cm3 molecule?1 s?1 is in good agreement with the experimental data. The NH3 + NO3 formation rate constant was found to be a factor of 4 smaller than that of the reaction OH + HONO2 producing the H2O + NO3 because of the lower barrier for the transition state for the OH + HONO2. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 69–78, 2010  相似文献   

2.
The kinetics and mechanism for the reaction of NH2 with HNO have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of this reaction has been computed by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on geometries optimized at the CCSD/6‐311++G(d, p) level. The major products of this reaction were found to be NH3 + NO formed by H‐abstraction via a long‐lived H2N???HNO complex and the H2NN(H)O radical intermediate formed by association with 26.9 kcal/mol binding energy. The rate constants for formation of primary products in the temperature range of 300–3000 K were predicted by variational transition state or RRKM theories. The predicted total rate constants at the 760 Torr Ar pressure can be represented by ktotal = 3.83 × 10?20 × T+2.47exp(1450/T) at T = 300–600 K; 2.58 × 10?22 × T+3.15 exp(1831/T) cm3 molecule?1 s?1 at T = 600?3000 K. The branching ratios of major channels at 760 Torr Ar pressure are predicted: k1 + k3 + k4 producing NH3 + NO accounts for 0.59–0.90 at T = 300–3000 K peaking around 1000 K, k2 accounts for 0.41–0.03 at T = 300–600 K decreasing with temperature, and k5 accounts for 0.07–0.27 at T > 600 K increasing gradually with temperature. The NH3 + NO formation rate constant was found to be a factor of 3–10 smaller than that of the isoelectronic reaction CH3 + HNO producing CH4 + NO, which has been shown to take place by barrierless H‐abstraction without involving a hydrogen‐bonding complex as in the NH2 case. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 677–677, 2009  相似文献   

3.
The kinetics and mechanism of the reaction of the cyanomidyl radical (HNCN) with the hydroxyl radical (OH) have been investigated by ab initio calculations with rate constants prediction. The single and triplet potential energy surfaces of this reaction have been calculated by single-point calculations at the CCSD(T)/6-311+G(3df,2p) level based on geometries optimized at the B3LYP/6-311+G(3df,2p) and CCSD/6-311++G(d,p) levels. The rate constants for various product channels in the temperature range of 300-3000 K are predicted by variational transition-state and Rice-Ramsperger-Kassel-Marcus (RRKM) theories. The predicted total rate constants can be represented by the expressions ktotal=2.66 x 10(+2)xT-4.50 exp(-239/T) in which T=300-1000 K and 1.38x10(-20)xT2.78 exp(1578/T) cm3 molecule(-1) s(-1) where T=1000-3000 K. The branching ratios of primary channels are predicted: k1 for forming singlet HON(H)CN accounts for 0.32-0.28, and k4 for forming singlet HONCNH accounts for 0.68-0.17 in the temperature range of 300-800 K. k2+k7 for producing H2O+NCN accounts for 0.55-0.99 in the high-temperature range of 800-3000 K. The branching ratios of k3 for producing HCN+HNO, k6 for producing H2N+NCO, k8 for forming 3HN(OH)CN, k9 for producing CNOH+3NH, and k5+k10 for producing NH2+NCO are negligible. The rate constants for key individual product channels are provided in a table for different temperature and pressure conditions.  相似文献   

4.
Ab initio UMP2 and UQCISD(T) calculations, with 6-311G** basis sets, were performed for the titled reactions. The results show that the reactions have two product channels: NH2+ HNCO→NH3+NCO (1) and NH2+HNCO-N2H3+CO (2), where reaction (1) is a hydrogen abstraction reaction via an H-bonded complex (HBC), lowering the energy by 32.48 kJ/mol relative to reactants. The calculated QCISD(T)//MP2(full) energy barrier is 29.04 kJ/mol, which is in excellent accordance with the experimental value of 29.09 kJ/mol. In the range of reaction temperature 2300-2700 K, transition theory rate constant for reaction (1) is 1.68 × 1011- 3.29 × 1011 mL · mol-1· s-1, which is close to the experimental one of 5.0 ×1011 mL× mol-1· s-1 or less. However, reaction (2) is a stepwise reaction proceeding via two orientation modes, cis and trans, and the energy barriers for the rate-control step at our best calculations are 92.79 kJ/mol (for cis-mode) and 147.43 kJ/mol (for trans-mode), respectively, which is much higher than  相似文献   

5.
The mechanisms for the reactions of ClO with ClOClO, ClOOCl, and ClClO(2) have been investigated at the CCSD(T)/6-311+G(3df)//PW91PW91∕6-311+G(3df) level of theory. The rate constants for their low energy channels have been calculated by statistical theory. The results show that the main products for the reaction of ClO with ClOClO are ClOCl + ClOO, which can be produced readily by ClO abstracting the terminal O atom from ClOClO. This process occurs without an intrinsic barrier, with the predicted rate constant: k (ClO + ClOClO) = 7.26 × 10(-10) T(-0.15) × exp (-40/T) cm(3)molecule(-1)s(-1) for 200-1500 K. For the reactions of ClO + ClOOCl and ClClO(2), the lowest abstraction barriers are 7.2 and 7.3 kcal/mol, respectively, suggesting that these two reactions are kinetically unimportant in the Earth's stratosphere as their rate constants are less than 10(-14) cm(3)molecule(-1)s(-1) below 700 K. At T = 200-1500 K, the computed rate constants can be represented by k (ClO+ ClOOCl) = 1.11 × 10 (-14) T (0.87) exp (-3576/T) and k (ClO+ ClClO(2)) = 4.61 × 10(-14) T(0.53) exp (-3588/T) cm(3)molecule(-1)s(-1). For these systems, no experimental or theoretical kinetic data are available for comparison.  相似文献   

6.
For plasma enhanced and catalytic chemical vapor deposition (PECVD and Cat‐CVD) processes using small silanes as precursors, disilanyl radical (Si2H5) is a potential reactive intermediate involved in various chemical reactions. For modeling and optimization of homogeneous a‐Si:H film growth on large‐area substrates, we have investigated the kinetics and mechanisms for the thermal decomposition of Si2H5 producing smaller silicon hydrides including SiH, SiH2, SiH3, and Si2H4, and the related reverse reactions involving these species by using ab initio molecular‐orbital calculations. The results show that the lowest energy path is the production of SiH + SiH4 that proceeds via a transition state with a barrier of 33.4 kcal/mol relative to Si2H5. Additionally, the dissociation energies for breaking the Si? Si and H? SiH2 bonds were predicted to be 53.4 and 61.4 kcal/mol, respectively. To validate the predicted enthalpies of reaction, we have evaluated the enthalpies of formation for SiH, SiH2, HSiSiH2, and Si2H4(C2h) at 0 K by using the isodesmic reactions, such as 2HSiSiH2 + 1C2H61Si2H6 + 2HCCH2 and 1Si2H4(C2h) + 1C2H61Si2H6 + 1C2H4. The results of SiH (87.2 kcal/mol), SiH2 (64.9 kcal/mol), HSiSiH2 (98.0 kcal/mol), and Si2H4 (68.9 kcal/mol) agree reasonably well previous published data. Furthermore, the rate constants for the decomposition of Si2H5 and the related bimolecular reverse reactions have been predicted and tabulated for different T, P‐conditions with variational Rice–Ramsperger–Kassel–Marcus (RRKM) theory by solving the master equation. The result indicates that the formation of SiH + SiH4 product pair is most favored in the decomposition as well as in the bimolecular reactions of SiH2 + SiH3, HSiSiH2 + H2, and Si2H4(C2h) + H under T, P‐conditions typically used in PECVD and Cat‐CVD. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Gas-phase kinetics and mechanisms of SiH(3) reactions with SiH(4), Si(2)H(6), Si(3)H(8), and Si(4)H(10), processes of relevance to a-Si thin-film deposition, have been investigated by ab initio molecular orbital and transition-state theory (TST) calculations. Geometric parameters of all the species involved in the title reactions were optimized by density functional theory at the B3LYP and BH&HLYP levels with the 6-311++G(3df,2p) basis set. The potential energy surface of each reaction was refined at the CCSD(T)/6-311++G(3df,2p) level of theory. The results show that the most favorable low energy pathways in the SiH(3) reactions with these silanes occur by H abstraction, leading to the formation of SiH(4) + Si(x)H(2x+1) (silanyl) radicals. For both Si(3)H(8) and n-Si(4)H(10) reactions, the lowest energy barrier channels take place by secondary Si-H abstraction, yielding SiH(4) + s-Si(3)H(7) and SiH(4) + s-Si(4)H(9), respectively. In the i-Si(4)H(10) reaction, tertiary Si-H abstraction has the lowest barrier producing SiH(4) + t-Si(4)H(9). In addition, direct SiH(3)-for-X substitution reactions forming Si(2)H(6) + X (X = H or silanyls) can also occur, but with significantly higher reaction barriers. A comparison of the SiH(3) reactions with the analogous CH(3) reactions with alkanes has been made. The rate constants for low-energy product channels have been calculated for the temperature range 300-2500 K by TST with Eckart tunneling corrections. These results, together with predicted heats of formation of various silanyl radicals and Si(4)H(10) isomers, have been tabulated for modeling of a-Si:H film growth by chemical vapor deposition.  相似文献   

8.
The reaction of Y+ + NH3 → Y+ NH + H2 was theoretically investigated by ab initio MO methods. Two possible pathways (1–1 H2 loss and 1–2 H2 loss) on the singlet potential energy surface and reaction mechanism were examined and discussed. The singlet and triplet PESs of this reaction system were compared to confirm the correctness of spin conservation concepts. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
A quantitative comparison of ab initio calculated rate coefficients using five computational methods and five different approaches of treating hindered internal rotation and tunneling with experimental values of rate coefficients for nine carbon-centered radical additions/beta scissions at 300, 600, and 1000 K is performed. The high-accuracy compound methods, CBS-QB3 and G3B3, and the density functionals, MPW1PW91, BB1K, and BMK, have been evaluated using the following approaches: (i) the harmonic oscillator approximation; (ii) the hindered internal rotor approximation for the internal rotation about the forming/breaking bond in the transition state and product; and the hindered internal rotation approximation combined with (iii) Wigner, (iv) Skodje and Truhlar, and (v) Eckart zero-curvature tunneling corrections. The density functional theory (DFT) based values for beta-scission rate coefficients deviate significantly from the experimental ones at 300 K, and the DFT methods do not accurately predict the equilibrium coefficient. The hindered rotor approximation offers a significant improvement in the agreement with experimental rate coefficients as compared to the harmonic oscillator treatment, especially at higher temperatures. Tunneling correction factors are smaller than 1.40 at 300 K and 1.03 at 1000 K. For both the CBS-QB3 method, including the hindered rotor treatment but excluding tunneling corrections, and the G3B3 method, including hindered rotor and Eckart tunneling corrections, a mean factor of deviation with experimentally observed values of 3 is found.  相似文献   

10.
Potential-energy surfaces for various channels of the HNO+NO2 reaction have been studied at the G2M(RCC,MP2) level. The calculations show that direct hydrogen abstraction leading to the NO+cis-HONO products should be the most significant reaction mechanism. Based on TST calculations of the rate constant, this channel is predicted to have an activation energy of 6–7 kcal/mol and an A factor of ca. 10−11 cm3 molecule−1 s−1 at ambient temperature. Direct H-abstraction giving NO+trans-HONO has a high barrier on PES and the formation of trans-HONO would rather occur by the addition/1,3-H shift mechanism via the HN(O)NO2 intermediate or by the secondary isomerization of cis-HONO. The formation of NO+HNO2 can take place by direct hydrogen transfer with the barrier of ca. 3 kcal/mol higher than that for the NO+cis-HONO channel. The formation of HNO2 by oxygen abstraction is predicted to be the least significant reaction channel. The rate constant calculated in the temperature range 300–5000 K for the lowest energy path producing NO+cis-HONO gave rise to © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 729–736, 1998  相似文献   

11.
The kinetics and mechanism for the reaction of ClOO with NO have been investigated by ab initio molecular orbital theory calculations based on the CCSD(T)/6-311+G(3df)//PW91PW91∕6-311+G(3df) method, employed to evaluate the energetics for the construction of potential energy surfaces and prediction of reaction rate constants. The results show that the reaction can produce two key low energy products ClNO + (3)O(2) via the direct triplet abstraction path and ClO + NO(2) via the association and decomposition mechanism through long-lived singlet pc-ClOONO and ClONO(2) intermediates. The yield of ClNO + O(2) ((1)△) from any of the singlet intermediates was found to be negligible because of their high barriers and tight transition states. As both key reactions initially occur barrierlessly, their rate constants were evaluated with a canonical variational approach in our transition state theory and Rice-Ramspergen-Kassel-Marcus/master equation calculations. The rate constants for ClNO + (3)O(2) and ClO + NO(2) production from ClOO + NO can be given by 2.66 × 10(-16) T(1.91) exp(341/T) (200-700 K) and 1.48 × 10(-24) T(3.99) exp(1711/T) (200-600 K), respectively, independent of pressure below atmospheric pressure. The predicted total rate constant and the yields of ClNO and NO(2) in the temperature range of 200-700 K at 10-760 Torr pressure are in close agreement with available experimental results.  相似文献   

12.
Reaction probabilities of gaseous nitrous acid, HONO, with HCl, HBr, and HI treated ice surfaces have been investigated in a fast flow-tube reactor coupled with a differentially pumped quadrupole mass spectrometer (QMS) at 191 K. The reaction probability increases with the HX surface coverage, and the rate is the highest for the HONO reaction on the HI-treated ice surface. Relative rate constants are correlated to the nucleophilic parameter, according to the linear free-energy relationship for this series of heterogeneous reactions on ice surfaces. The correlation was also extended to HOCl + HX(ad) reactions on the ice surface, and it can be used to treat other heterogeneous atmospheric and catalytic reactions. The reaction products ClNO and BrNO were determined by the QMS. INO was found to rapidly convert to I2 on surfaces, and I2 was observed from the reaction of HONO + HI. The uptake coefficient of I2 on the HI-treated ice surface is higher than that for I2 on the water-ice surface.  相似文献   

13.
The transition electric dipole moments between low-lying valence states of NH+ are calculated by an ab initio effective valence-shell Hamiltonian (Hv) method. The Hv calculated transition moments are found to be in good agreement with those by other accurate ab initio methods. The spontaneous emission probabilities for the A2− → X2Π, B2Δ → X2Π, and C2+X2Π transitions of NH+ are computed. Also, radiative lifetimes for A2, B2Δ, and C2+ states are all theoretically determined using the potential energy functions by Hv. Also, the Hv results are well compared with those computed using the Morse potentials and the rkr potentials which are obtained from experimental data. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Six product channels have been found in the association reaction of CN + CH2CO, and a variety of possible complexes and saddle points along the minimum energy reaction paths have been characterized at the UMP2(full)/6‐31G(d) level. The dominant reaction channels are the production of CH2CN + CO and CH2NC + CO. The isomerization and dissociation reactions of the major products of CH2CN and CH2NC have been investigated using the G2MP2 level. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

15.
An MP4(full,SDTQ)/6-311++G(d,p)//MP2(full)/6-311++G(d,p) ab initio study was performed of the reactions of formyl and isoformyl cations with H2O and NH3, which play an important role in flame and interstellar chemistries. Two different confluent channels were located leading to CO+H3O+/NH. The first one corresponds to the approach of the neutral molecule to the carbon atom of the cations. The second one leads to the direct proton transfer from the cations to the neutrals. At 900 K the separate products CO+H3O+/NH are the most stable species along the Gibbs energy profiles for the processes. For the reaction with H2O the reaction channel leading to HC(OH) (protonated formic acid) is disfavored with respect to the two CO+H3O+ channels in agreement with the experimental evidence that H3O+ is the major ion observed in hydrocarbon flames. According to our calculations, NH+H2O are considerably more stable in Gibbs energy than NH3+H3O+;NH will predominate in the reaction zone when ammonia is added to CH4+Ar diffusion flame, as experimentally observed. At 100 K the most stable structures are the intermediate complexes CO…HOH/HNH. Particularly the CO…HOH complex has a lifetime large enough to be detected and, therefore, could play a certain role in interstellar chemistry. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1432–1443, 1999  相似文献   

16.
The mechanism and kinetics for the gas-phase hydrolysis of N(2)O(4) isomers have been investigated at the CCSD(T)/6-311++G(3df,2p)//B3LYP/6-311++G(3df,2p) level of theory in conjunction with statistical rate constant calculations. Calculated results show that the contribution from the commonly assumed redox reaction of sym-N(2)O(4) to the homogeneous gas-phase hydrolysis of NO(2) can be unequivocally ruled out due to the high barrier (37.6 kcal/mol) involved; instead, t-ONONO(2) directly formed by the association of 2NO(2), was found to play the key role in the hydrolysis process. The kinetics for the hydrolysis reaction, 2NO(2) + H(2)O ? HONO + HNO(3) (A) can be quatitatively interpreted by the two step mechanism: 2NO(2) → t-ONONO(2), t-ONONO(2) + H(2)O → HONO + HNO(3). The predicted total forward and reverse rate constants for reaction (A), k(tf) = 5.36 × 10(-50)T(3.95) exp(1825/T) cm(6) molecule(-2) s(-1) and k(tr) = 3.31 × 10(-19)T(2.478) exp(-3199/T) cm(3) molecule(-1) s(-1), respectively, in the temperature range 200-2500 K, are in good agreement with the available experimental data.  相似文献   

17.
The potential energy surface (PES) for the CF3CFHO2+HO2 reaction has been theoretically investigated using the DFT [B3LYP/6‐311G(d,p)] and B3LYP/6‐311++G(3df,3pd)//B3LYP/6‐311G(d,p) levels of theory. Both singlet and triplet PESs are investigated. The reaction mechanism on the triplet surface is simple. It is revealed that the formation of CF3CFHOOH+3O2 is the dominant channel on the triplet surface. On the basis of the ab initio data, the total rate constants for the reaction CF3CFHO2+HO2 in the T = 210–500 K range have been computed using conventional transition state theory with Wigner's tunneling correction and have been fitted by a rate constant expression as k = 1.04 ×10?12(cm3 molecule?1 s?1) exp (700.33/T). Calculated transition state rate constants with Wigner's tunneling correction for the reaction CF3CFHO2+HO2 are in good agreement with the available experimental values. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

18.
Hydrogen exchange reactions between lithium and sodium compounds, MX (M=Li: X=H, CH3, NH2, OH, F; M=Na: X=CH3), and the corresponding hydrides, HX, have been modelled by means of ab initio calculations including electron correlation and zero point energy (ZPE) corrections. Small or no activation barriers (from the initial complexes) are encountered in systems involving lone pairs (10.8, 2.4, 0.0 kcal/mol for X=NH2, OH, F, respectively). Since the association energies of the initial complexes are much larger (21.0, 20.4, 23.5 kcal/mol, respectively; MP2/6–31+G*/6–31+G* + ZPE), such exchange reactions should occur spontaneously in the gas phase. The methyl systems (X=CH3) have the largest barriers: 26.7 (M=Li) and 31.7 (M=Na) kcal/mol (MP2/6–31+G*/6–31G* + ZPE), and the initial complexes are only weakly bound. The significance of these systems as models for hydrogen exchange reactions in complexes of electropositive transition metals is discussed. However, the gegenion-free exchange of hydrogen between CH3 and CH4 has a much lower, 11.8 kcal/mol barrier (MP2/6–31+G*/6–31+G* + ZPE). All the transition structures are highly ionic (charges on the metals > +0.8). The effect of aggregation has been considered by examining the hydrogen exchange between (LiX)2 and HX(X=H, CH3, NH2, OH). Although these dimer reactions formally involve six, instead of four electrons, no “aromatic” preference is observed.  相似文献   

19.
The F + CH(3)NHNH(2) reaction mechanism is studied based on ab initio quantum chemistry methods as follows: the minimum energy paths (MEPs) are computed at the UMP2/6-311++G(d,p) level; the geometries, harmonic vibrational frequencies, and energies of all stationary points are predicted at the same level of theory; further, the energies of stationary points and the points along the MEPs are refined by UCCSD(T)/6-311++g(3df,2p). The ab initio study shows that, when the F atom approaches CH(3)NHNH(2), the heavy atoms, namely N and C atoms, are the favorable combining points. For the two N atoms, two prereaction complexes with C(s) symmetry are generated and there exists seven possible subsequent reaction routes, of which routes 1, 2, 5, and 7 are the main channels. Routes 1, 2, and 5 are associated with HF elimination, with H from the amino group or imido group, and route 7 involves the N-N bond break. Routes 3 and 6 with relation to HF elimination with H from methyl, and route 4 involved the C-N bond break, are all energetically disfavored. For the C atom, the attack of F results in the break of the C-N bond and the products are CH(3)F + NHNH(2). This route is very competitive.  相似文献   

20.
The rate constant for the NH3 + NO2 rlhar2; NH2 + HONO reaction (1) has been kinetically modeled by using the photometrically measured NO2 decay rates available in the literature. The rates of NO2 decay were found to be strongly dependent on reaction (1) and, to a significant extent, on the secondary reactions of NH2 with NOX and the decomposition of HONO formed in the initiation reaction. These secondary reactions lower the values of k1 determined directly from the experiments. Kinetic modeling of the initial rates of NO2 decay computed from the reported rate equation, - d[NO2]/dt = k1[NH3][NO2] based on the conditions employed led to the following expression: This result agrees closely with the values predicted by ab initio MO [G2M//B3LYP/6-311 G(d,p)] and TST calculations. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 245–251, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号