首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protected G*[s ]C*[s ]U*[s ]A*[s ]U*[s ]A*[s ]G*[s ]C* octanucleoside 24 was prepared by S‐alkylation of the thiolate derived from tetranucleoside 23 with the methanesulfonate 22 , and transformed to the silylated and isopropylidenated 25 , and further into the fully deprotected octanucleoside 26 . Compound 22 was derived from the methoxytrityl‐protected tetranucleoside 21 , and 21 was obtained by S‐alkylation of the thiolate derived from the dinucleoside 19 with methanesulfonate 17 derived from 16 by detritylation and mesylation. Similarly, tetranucleoside 23 resulted from S‐alkylation of the thiolate derived from 18 with the methanesulfonate 20 derived from 19 . Dinucleosides 16 and 18 resulted from S‐alkylation of the thiolate derived from the known cytidine‐derived thioacetate 15 with the C(8)‐substituted guanosine‐derived methanesulfonates 12 and 14 , respectively, that were synthesized from the protected precursors 4 and 7 by formylation, reduction, protection, and mesylation. The structures of the duplexes of 25 and 26 were calculated using AMBER* modelling and based on the known structure of the core tetranucleoside U*[s ]A*[s ]U*[s ]A*. The former shows a helix with a bent helix axis and strong buckle and propeller twists, whereas the latter is a regular, right‐handed, and apparently strain‐free helix. In agreement with modelling, the silylated and isopropylidenated octanucleoside 25 in (CDCl2)2 solution led to a mixture of associated species possessing at most four Watson? Crick base pairs, while the fully deprotected octanucleoside 26 in aqueous medium forms a duplex, as evidenced by a decreasing CD absorption upon increasing the temperature and by a UV‐melting curve with a melting temperature of ca. 10° below the one of the corresponding RNA octamer, indicating cooperativity between base pairing and base‐pair stacking.  相似文献   

2.
The formation of cyclic duplexes (pairing) of known oxymethylene‐linked self‐complementary U*[o]A(*) dinucleosides contrasts with the absence of pairing of the ethylene‐linked U*[ca]A(*) analogues. The origin of this difference, and the expected association of U*[x]A(*) and A*[x]U(*) dinucleosides with x=CH2, O, or S was analysed. According to this analysis, pairing occurs via constitutionally isomeric Watson–Crick, reverse WatsonCrick, Hoogsteen, or reverse Hoogsteen H‐bonded linear duplexes. Each one of them may give rise to three diastereoisomeric cyclic duplexes, and each one of them can adopt three main conformations. The relative stability of all conformers with x=CH2, O, or S were analysed. U*[x]A(*) dinucleosides with x=CH2 do not form stable cyclic duplexes, dinucleosides with x=O may form cyclic duplexes with a gg‐conformation about the C(4′)? C(5′) bond, and dinucleosides with x=S may form cyclic duplexes with a gt‐conformation about this bond. The temperature dependence of the chemical shift of H? N(3) of the self‐complementary, oxymethylene‐linked U*[o]A(*) dinucleosides 1 – 6 in CDCl3 in the concentration range of 0.4–50 mM evidences equilibria between the monoplex, mainly linear duplexes, and higher associates for 3 , between the monoplex and cyclic duplexes for 6 , and between the monoplex, linear, and cyclic duplexes as well as higher associates for 1, 2, 4 , and 5 . The self‐complementary, thiomethylene‐linked U*[s]A(*) dinucleosides 27 – 32 and the sequence isomeric A*[s]U(*) analogues 33 – 38 were prepared by S‐alkylation of the 6‐(mesyloxymethyl)uridine 12 and the 8‐(bromomethyl)adenosine 22 . The required thiolates were prepared in situ from the C(5′)‐acetylthio derivatives 9, 15, 19 , and 25 . The association in CHCl3 of the thiomethylene‐linked dinucleoside analogues was studied by 1H‐NMR and CD spectroscopy, and by vapour‐pressure osmometric determination of the apparent molecular mass. The U*[s]A(*) alcohols 28, 30 , and 31 form cyclic duplexes connected by Watson–Crick H‐bonds, while the fully protected dimers 27 and 29 form mainly linear duplexes and higher associates. The diol 32 forms mainly cyclic duplexes in solution and corrugated ribbons in the solid state. The nucleobases of crystalline 32 form reverse Hoogsteen H‐bonds, and the resulting ribbons are cross‐linked by H‐bonds between HOCH2? C(8/I) and N(3/I). Among the A*[s]U(*) dimers, only the C(8/I)‐hydroxymethylated 37 forms (mainly) a cyclic duplex, characterized by reverse Hoogsteen base pairing. The dimers 34 – 36 form mainly linear duplexes and higher associates. Dimers 34 and particularly 38 gelate CHCl3. Temperature‐dependent CD spectra of 28, 30, 31 , and 37 evidence π‐stacking in the cyclic duplexes. Base stacking in the particularly strongly associating diol 32 in CHCl3 solution is evidenced by a melting temperature of ca. 2°.  相似文献   

3.
The self‐complementary guanosine‐ and cytidine‐derived aminomethylene‐linked C*[n ]G dinucleoside 9 was synthesized by reductive amination of aldehyde 3 with an iminophosphorane derived from azide 7 . Deacylation of 9 gave the isopropylidene‐protected dinucleoside 10 . The sequence‐isomeric G*[n ]C dinucleoside 11 was similarly prepared from aldehyde 8 and azide 5 , and deacylated to 12 . The association of 10 and 12 in CHCl3 or in CHCl3/DMSO mixtures, and the structure of the associates were studied by 1H‐NMR, ESI‐MS, CD, and vapor pressure osmometry (VPO). Broad 1H‐NMR signals of dinucleosides 10 and 12 evidence an equilibrium between duplexes and quadruplexes (Hoogsteen base pairing between the Watson? Crick base‐paired duplexes). The quadruplex dominates for the G*[n ]C dinucleoside 12 between ?50° and room temperature. The sequence‐isomeric C*[n ]G 10 forms mostly only a cyclic duplex in CDCl3 and in CDCl3/(D6)DMSO 9 : 1.  相似文献   

4.
The self‐complementary aminomethylene‐linked A*[n] U* dinucleosides 23 – 26 were prepared by reductive coupling of aldehyde 10 and azide 8 . The U*[n] A* sequence isomers 19 – 21 were similarly prepared from aldehyde 14 and azide 3 . The substituents at C(6/I) of 23 – 26 and at C(8/I) of 19 – 21 strongly favour the syn‐conformation. The A*[n] U* dinucleoside 23 associates more strongly than the sequence‐isomeric U*[n] A* dinucleoside 19 . The A*[n] U* dinucleosides 23 and 24 associate more strongly than the analogues devoid of the substituent at C(6/I), while the U*[n] A* dinucleoside 19 associates less strongly than the analogue devoid of the substituent at C(8/I). While 23 and 24 form cyclic duplexes mostly by WatsonCrick‐type base pairing, 25 only forms linear associates. The U*[n] A* dinucleoside 19 forms mostly linear duplexes and higher associates, and 21 forms cyclic duplexes showing both WatsonCrick‐ and Hoogsteen‐type base pairing. The cyclic duplexes of the aminomethylene‐linked dinucleosides show both the gg‐ and gt‐orientation of the linker, with the gg‐orientation being preferred.  相似文献   

5.
Inspection of Maruzen models and force‐field calculations suggest that oligonucleotide analogues integrating backbone and bases (ONIBs) with an aminomethylene linker form similar cyclic duplexes as the analogous oxymethylene linked dinucleosides. The self‐complementary adenosine‐ and uridine‐derived aminomethylene‐linked A*[n ]U dinucleosides 15 – 17 were prepared by an aza‐Wittig reaction of the aldehyde 10 with an iminophosphorane derived from azide 6 . The sequence‐isomeric U*[n ]A dinucleosides 18 – 20 were similarly prepared from aldehyde 3 and azide 12 . The N‐ethylamine 5 , the acetamides 7 and 14 , and the amine 13 were prepared as references for the conformational analysis of the dinucleosides. In contradistinction to the results of calculations, the N‐ethylamine 5 exists as intramolecularly H‐bonded hydroxyimino tautomer. The association in CDCl3 of these dinucleosides was studied by 1H‐NMR and CD spectroscopy. The A*[n ]U dinucleosides 16 and 17 associate more strongly than the sequence isomers 19 and 20 ; the cyclic duplexes of 16 form preferentially WatsonCrick‐type base pairs, while 17, 19 , and 20 show both WatsonCrick‐ and Hoogsteen‐type base pairing. The cyclic duplexes of the aminomethylene‐linked dinucleosides prefer a gg‐orientation of the linker. No evidence was found for an intramolecular H‐bond of the aminomethylene group. The CD spectra of 16 and 17 show a strong, those of 19 a weak, and those of 20 almost no temperature dependence.  相似文献   

6.
The self‐complementary tetrameric propargyl triols 8, 14, 18 , and 21 were synthesized to investigate the duplex formation of self‐complementary, ethynylene‐linked UUAA, AAUU, UAUA, and AUAU analogues with integrated bases and backbone (ONIBs). The linear synthesis is based on repetitive Sonogashira couplings and C‐desilylations (34–72% yield), starting from the monomeric propargyl alcohols 9 and 15 and the iodinated nucleosides 3, 7, 11 , and 13 . Strongly persistent intramolecular H‐bonds from the propargylic OH groups to N(3) of the adenosine units prevent the gg‐type orientation of the ethynyl groups at C(5′). As such, an orientation is required for the formation of cyclic duplexes, this H‐bond prevents the formation of duplexes connected by all four base pairs. However, the central units of the UAUA and AAUU analogues 18 and 14 associate in CDCl3/(D6)DMSO 10 : 1 to form a cyclic duplex characterized by reverse Hoogsteen base pairing. The UUAA tetramer 8 forms a cyclic UU homoduplex, while the AUAU tetramer 21 forms only linear associates. Duplex formation of the O‐silylated UUAA and AAUU tetramers is no longer prevented. The self‐complementary UUAA tetramer 22 forms Watson–Crick‐ and Hoogsteen‐type base‐paired cyclic duplexes more readily than the sequence‐isomeric AAUU tetramer 23 , further illustrating the sequence selectivity of duplex formation.  相似文献   

7.
The self‐complementary (Z)‐configured U*[ce]A(*) dinucleotide analogues 6, 8, 10, 12, 14 , and 16 , and the A*[ce]U(*) dimers 19, 21, 23, 25, 27 , and 29 were prepared by partial hydrogenation of the corresponding ethynylene linked dimers. Photolysis of 14 led to the (E)‐alkene 17 . These dinucleotide analogues associate in CDCl3 solution, as evidenced by NMR and CD spectroscopy. The thermodynamic parameters of the duplexation were determined by van't Hoff analysis. The (Z)‐configured U*[ce]A(*) dimers 14 and 16 form cyclic duplexes connected by WatsonCrick H‐bonds, the (E)‐configured U*[ce]A dimer 17 forms linear duplexes, and the U*[ce]A(*) allyl alcohols 6, 8, 10 , and 12 form mixtures of linear and cyclic duplexes. The C(6/I)‐unsubstituted A*[ce]U allyl alcohols 19 and 23 form linear duplexes, whereas the C(6/I)‐substituted A*[ce]U* allyl alcohols 21 and 25 , and the C(5′/I)‐deoxy A*[ce]U(*) dimers 27 and 29 also form minor amounts of cyclic duplexes. The influence of intra‐ and intermolecular H‐bonding of the allyl alcohols and the influence of the base sequence upon the formation of cyclic duplexes are discussed.  相似文献   

8.
The self‐complementary, ethylene‐linked U*[ca]A(*) dinucleotide analogues 8, 10, 12, 14, 16 , and 18 , and the sequence‐isomeric A*[ca]U(*) analogues 20, 22, 24, 26, 28 , and 30 were obtained by Pd/C‐catalyzed hydrogenation of the corresponding, known ethynylene‐linked dimers. The association of the ethylene‐linked dimers was investigated by NMR and CD spectroscopy. The U*[ca]A(*) dimers form linear duplexes and higher associates (K between 29 and 114M ?1). The A*[ca]U(*) dimers, while associating more strongly (K between 88 and 345M ?1), lead mostly to linear duplexes and higher associates; they form only minor amounts of cyclic duplexes. The enthalpy–entropy compensation characterizing the association of the U*[cx]A(*) and A*[cx]U(*) dimers (x=y, e, and a) is discussed.  相似文献   

9.
The thiomethylene‐linked U*[s]U(*) dimers 9 – 14 were synthesized by substitution of the 6‐[(mesyloxy)methyl]uridine 6 by the thiolate derived from the uridine‐5′‐thioacetates 7 and 8 followed by O‐deprotection. Similarly, the thiomethylene‐linked A*[s]A(*) dimers 9 – 14 were obtained from the 8‐(bromomethyl)adenosine 15 and the adenosine‐5′‐thioacetates 16 and 17 . The concentration dependence of both H? N(3) of the U*[s]U(*) dimers 9 – 14 evidences the formation of linear and cyclic duplexes, and of linear higher associates, C(8 or 6)CH2OH and/or C(5′/II)OH groups favouring the formation of cyclic duplexes. The concentration dependence of the chemical shift for both H2N? C(6) of the A*[s]A(*) dimers 18 – 23 evidences the formation of mainly linear associates. The heteroassociation of U*[s]U(*) to A*[s]A(*) dimers is stronger than the homoassociation of U*[s]U(*) dimers, as evidenced by diluting equimolar mixtures of 11 / 20 and 13 / 22 . A 1 : 1 stoichiometry of the heteroassociation is evidenced by a Job's plot for 11 / 20 , and by mole ratio plots for 9 / 18, 10 / 19, 12 / 21, 13 / 22 , and 14 / 23 .  相似文献   

10.
The self‐complementary UA and AU dinucleotide analogues 41 – 45, 47, 48 , and 51 – 60 were prepared by Sonogashira coupling of 6‐iodouridines with C(5′)‐ethynylated adenosines and of 8‐iodoadenosines with C(5′)‐ethynylated uridines. The dinucleotide analogues associate in CDCl3 solution. The C(6/I)‐unsubstituted AU dimers 51 and 54 prefer an anti‐oriented uracilyl group and form stretched linear duplexes. The UA propargyl alcohols 41 and 43 – 45 possess a persistent intramolecular O(5′/I)? H???N(3/I) H‐bond and, thus, a syn‐oriented adeninyl and a gt‐ or tg‐oriented ethynyl moiety; they form corrugated linear duplexes. All other dimers form cyclic duplexes characterized by syn‐oriented nucleobases. The preferred orientation of the ethynyl moiety (the C(4′),C(5′) torsion angle) defines a conformation between gg and one where the ethynyl group eclipses O(4′/I). The UA dimers 42, 47 , and 48 form Watson–Crick H‐bonds, the AU dimers 56 and 58 – 60 H‐bonds of the Watson–Crick‐type, the AU dimers 53 and 55 reverse‐Hoogsteen, and 57 Hoogsteen H‐bonds. The pairing mode depends on the substituent of C(5′/I) (H, OSiiPr3; OH) and on the H‐bonds of HO? C(5′/I) in the AU dimers. Association constants were derived from the concentration‐dependent chemical shift for HN(3) of the uracilyl moiety; they vary from 45–104 M ?1 for linear duplexes to 197–2307 M ?1 for cyclic duplexes. The thermodynamic parameters were determined by van't Hoff analysis of the temperature‐dependence of the (concentration‐dependent) chemical shift for HN(3) of the uracilyl moiety. Neglecting stacking energies, one finds an average energy of 3.5–4.0 kcal/mol per intermolecular H‐bond. Base stacking is evidenced by the temperature‐dependent CD spectra. The crystal structure of 54 shows two antiparallel chains of dimers connected by Watson‐Crick H‐bonds. The chains are bridged by a strong H‐bond between the propargylic OH and O?C(4) and by weak reverse A ? A Hoogsteen H‐bonds.  相似文献   

11.
The structure of the hexitol nucleic acid (HNA) h(GCGCTTTTGCGC) was determined by NMR spectroscopy. This unnatural nucleic acid was developed as a mimic for A‐RNA. In solution, the studied sequence is forming a symmetric double‐stranded structure with four central consecutive T⋅T wobble pairs flanked by G⋅C Watson‐Crick base pairs. The stem regions adopt an A‐type helical structure. Discrete changes in backbone angles are altering the course of the helix axis in the internal loop region. Two H‐bonds are formed in each wobble pair, and base stacking is preserved in the duplex, explaining the stability of the duplex. This structure elucidation provides information about the influence of a (T)4 fragment on local helix geometries as well as on the nature of the T⋅T mismatch base pairing in a TTTT tract.  相似文献   

12.
To determine whether the remarkable chemical properties of the pyranosyl isomer of RNA as an informational Watson‐Crick base‐pairing system are unique to the pentopyranosyl‐(4′→2′)‐oligonucleotide isomer derived from the RNA‐building block D ‐ribose, studies on the entire family of diastereoisomeric pyranosyl‐(4′→2′)‐oligonucleotide systems deriving from D ‐ribose, L ‐lyxose, D ‐xylose, and L ‐arabinose were carried out. The result of these extended studies is unambiguous: not only pyranosyl‐RNA, but all members of the pentopyranosyl‐(4′→2′)‐oligonucleotide family are highly efficient Watson‐Crick base‐pairing systems. Their synthesis and pairing properties will be described in a series of publications in this journal. The present paper describes the α‐L ‐lyxopyranosyl‐(4′→2′)‐system.  相似文献   

13.
Janus bases are heterocyclic nucleic acid base analogs that present two different faces able to simultaneously hydrogen bond to nucleosides that form Watson–Crick base pairs. The synthesis of a Janus‐AT nucleotide analogue, N JAT , that has an additional endocyclic ring nitrogen and is thus more capable of efficiently discriminating T/A over G/C bases when base‐pairing in a standard duplex‐DNA context is described. Conversion to a phosphoramidite ultimately afforded incorporation into an oligonucleotide. In contrast to the first generation of carbocyclic Janus heterocycles, it remains in its unprotonated state at physiological pH and, therefore, forms very stable Watson–Crick base pairs with either A or T bases. Biophysical and computational methods indicate that N JAT is an improved candidate for sequence‐specific genome targeting.  相似文献   

14.
25, 25′, 27, 27′‐Bis(1,3‐dioxypropane)‐bis(5, 11, 17, 23‐tetra‐tert‐butylcalix[4]arene‐26,28‐diol) (4) and 25, 25′, 27, 27′‐bis(1, 4‐dioxybutane)‐bis (5, 11, 17, 23‐tetra‐tert‐butylcalix‐[4]arene‐26, 28‐diol) (5) were synthesized by the reaction of p‐tert‐butylcalix[4]arene (1) with preorganized 25, 27‐bis(3‐bromoproxyl)calix[4]arene‐26, 27‐diol (2) and 25, 27‐bis(3‐bromobutoxyl)calix[4]arene‐26, 27‐diol (3) in the presence of K2CO3 and KI. Compounds 4 and 5 were characterized with X‐ray analysis and the selectivity of 4 and 5 toward K+ over other alkali metal ions, alkaline metal ions as well as NH4+ were investigated with an ion‐selective electrode.  相似文献   

15.
The oligonucleotide d(TX)9, which consists of an octadecamer sequence with alternating non‐canonical 7‐deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double‐stranded DNA through the formation of hydrogen‐bonded Watson–Crick base pairs. dsDNA with metal‐mediated base pairs was then obtained by selectively replacing W‐C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag+ ions, and its stability is significantly enhanced in the presence of Ag+ ions while its double‐helix structure is retained. Temperature‐dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)‐mediated base pairs. This strategy could become useful for preparing stable metallo‐DNA‐based nanostructures.  相似文献   

16.
Our studies of α‐L ‐Threofuranosyl‐(3′→2′)‐oligonucleotides (‘TNA') are part of a systematic experimental inquiry into the base‐pairing properties of potentially natural nucleic acid alternatives taken from RNA's close structural neighborhood. TNA is an efficient Watson‐Crick base‐pairing system and has the capability of informational cross‐pairing with both RNA and DNA. This property, together with the system's constitutional and (presumed) generational simplicity, warrants special scrutiny of TNA in the context of the search for chemical clues to RNA's origin.  相似文献   

17.
The sulfone 2 , and the sulfoxides (S)‐ 3 and (R)‐ 3 were obtained by oxidation of the thiomethylene‐linked A*[s ]U dinucleoside 1 . Conformational analysis and association studies of 2 , (S)‐ 3 , and (R)‐ 3 reveal a strong influence of the configuration on the conformation of the linking unit and on the self‐association of the dinucleosides.  相似文献   

18.
The base‐pairing properties of oligonucleotides containing the unusual N8‐linked 8‐aza‐7‐deazaadenine 2′‐deoxyribonucleoside ( 2a ) as well as its 7‐bromo derivative 2b are described. The oligonucleotides were prepared by solid‐phase synthesis employing phosphoramidite chemistry. Compound 2a forms a strong base pair with Td for which a reverse Watson‐Crick pair is suggested (Fig. 9). Compound 2a displays a lower N‐glycosylic‐bond stability than its N9‐nucleoside and shows strong stacking interactions when incorporated into oligonucleotides. The replacement of 2′‐deoxyadenosine by 2a does not significantly influence the duplex stability. However, this behavior depends on the position of the incorporation.  相似文献   

19.
Schiff base condensation of 2,6‐diformylpyridine and 1,3‐diaminopropan‐2‐ol in the presence of a BaII template ion yields a complex containing a [2+2] macrocycle, [Ba21,2‐ClO4)2(H2L1)2], where H2L1 is 3,7,15,19,25,26‐hexaazatricyclo[19.3.1.19,13]hexacosa‐1(25),2,7,9(26),10,12,14,19,21,23‐decaene‐5,17‐diol. On transmetallation with CuII cations, the macrocycle undergoes three successive ring contractions, yielding crystals of (acetato‐κO)[26,28‐dioxa‐3,7,15,19,25,27‐hexaazahexacyclo[19.3.1.12,5.19,13.117,10.03,8]octacosa‐1(25),9(27),10,12,14,21,23‐heptaene‐κ5N]copper(II) perchlorate, [Cu(CH3COO)(C20H22N6O2)]ClO4 or [Cu(CH3COO)(L2)]ClO4, in which the macrocycle ring size has been reduced from 20 members in H2L1 to 16 in L2.  相似文献   

20.
Cocrystals are molecular solids composed of at least two types of neutral chemical species held together by noncovalent forces. Crystallization of thymine [systematic name: 5‐methylpyrimidine‐2,4(1H,3H)‐dione] with four phenolic coformers resulted in cocrystal formation, viz. catechol (benzene‐1,2‐diol) giving thymine–catechol (1/1), C5H6N2O2·C6H6O2, (I), resorcinol (benzene‐1,3‐diol) giving thymine–resorcinol (2/1), 2C5H6N2O2·C6H6O2, (II), hydroquinone (benzene‐1,4‐diol) giving thymine–hydroquinone (2/1), 2C5H6N2O2·C6H6O2, (III), and pyrogallol (benzene‐1,2,3‐triol) giving thymine–pyrogallol (1/2), C5H6N2O2·2C6H6O3, (IV). The resorcinol molecule in (II) occupies a twofold axis, while the hydroquinone molecule in (III) is situated on a centre of inversion. Thymine–thymine base pairing is common across all four structures, albeit with different patterns. In (I)–(III), the base pair is propagated into an infinite one‐dimensional ribbon, whereas it exists as a discrete dimeric unit in (IV). In (I)–(III), the two donor N atoms and one carbonyl acceptor O atom of thymine are involved in thymine–thymine base pairing and the remaining carbonyl O atom is hydrogen bonded to the coformer. In contrast, in (IV), just one donor N atom and one acceptor O atom are involved in base pairing, and the remaining donor N atom and acceptor O atom of thymine form hydrogen bonds to the coformer molecules. Thus, the utilization of the donor and acceptor atoms of thymine in the hydrogen bonding is influenced by the coformers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号