首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A proper vertex coloring of a graph G=(V, E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L‐list colorable if for a given list assignment L={L(v)|vV}, there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L‐list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k‐choosable. In this paper we prove that every planar graph G without 4‐cycles is acyclically 6‐choosable. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 307–323, 2009  相似文献   

2.
A proper vertex coloring of a graph G = (V, E) is acyclic if G contains no bicolored cycle. Given a list assignment L = {L(v)|vV} of G, we say G is acyclically L‐list colorable if there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L‐list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k‐choosable. In this article we prove that every planar graph without 4‐cycles and without intersecting triangles is acyclically 5‐choosable. This improves the result in [M. Chen and W. Wang, Discrete Math 308 (2008), 6216–6225], which says that every planar graph without 4‐cycles and without two triangles at distance less than 3 is acyclically 5‐choosable. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

3.
The following question was raised by Bruce Richter. Let G be a planar, 3‐connected graph that is not a complete graph. Denoting by d(v) the degree of vertex v, is G L‐list colorable for every list assignment L with |L(v)| = min{d(v), 6} for all vV(G)? More generally, we ask for which pairs (r, k) the following question has an affirmative answer. Let r and k be the integers and let G be a K5‐minor‐free r‐connected graph that is not a Gallai tree (i.e. at least one block of G is neither a complete graph nor an odd cycle). Is G L‐list colorable for every list assignment L with |L(v)| = min{d(v), k} for all vV(G)? We investigate this question by considering the components of G[Sk], where Sk: = {vV(G)|d(v)8k} is the set of vertices with small degree in G. We are especially interested in the minimum distance d(Sk) in G between the components of G[Sk]. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:18–30, 2012  相似文献   

4.
Let G=G(V,E) be a simple graph, L a list assignment with |L(v)|=Δ(G)vV and WV an independent subset of the vertex set. Define to be the minimum distance between two vertices of W. In this paper it is shown that if G is 2-connected with Δ(G)=3 and G is not K4 then every precoloring of W is extendable to a proper list coloring of G provided that d(W)≥6. An example shows that the bound is sharp. This result completes the investigation of precoloring extensions for graphs with |L(v)|=Δ(G) for all vV where the precolored set W is an independent set.  相似文献   

5.
A proper vertex coloring of a graph G = (V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L‐list colorable if for a given list assignment L = {L(v): v: ∈ V}, there exists a proper acyclic coloring ? of G such that ?(v) ∈ L(v) for all vV. If G is acyclically L‐list colorable for any list assignment with |L (v)|≥ k for all vV, then G is acyclically k‐choosable. In this article, we prove that every planar graph G without 4‐ and 5‐cycles, or without 4‐ and 6‐cycles is acyclically 5‐choosable. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 245–260, 2007  相似文献   

6.
The choice number ch(G) of a graph G=(V, E) is the minimum number k such that for every assignment of a list S(v) of at least k colors to each vertex vV, there is a proper vertex coloring of G assigning to each vertex v a color from its list S(v). We prove that if the minimum degree of G is d, then its choice number is at least (½−o(1))log2 d, where the o(1)‐term tends to zero as d tends to infinity. This is tight up to a constant factor of 2+o(1), improves an estimate established by the author, and settles a problem raised by him and Krivelevich. © 2000 John Wiley & Sons, Inc. Random Struct. Alg., 16, 364–368, 2000  相似文献   

7.
A total coloring of a graph G is a coloring of all elements of G, i.e., vertices and edges, in such a way that no two adjacent or incident elements receive the same color. Let L(x) be a set of colors assigned to each element x of G. Then a list total coloring of G is a total coloring such that each element x receives a color contained in L(x). The list total coloring problem asks whether G has a list total coloring. In this paper, we first show that the list total coloring problem is NP-complete even for series-parallel graphs. We then give a sufficient condition for a series-parallel graph to have a list total coloring, that is, we prove a theorem that any series-parallel graph G has a list total coloring if |L(v)|min{5,Δ+1} for each vertex v and |L(e)|max{5,d(v)+1,d(w)+1} for each edge e=vw, where Δ is the maximum degree of G and d(v) and d(w) are the degrees of the ends v and w of e, respectively. The theorem implies that any series-parallel graph G has a total coloring with Δ+1 colors if Δ4. We finally present a linear-time algorithm to find a list total coloring of a given series-parallel graph G if G satisfies the sufficient condition.  相似文献   

8.
A proper vertex coloring of a graph G = (V,E) is acyclic if G contains no bicolored cycle. A graph G is L‐list colorable if for a given list assignment L = {L(v): vV}, there exists a proper coloring c of G such that c (v) ∈ L(v) for all vV. If G is L‐list colorable for every list assignment with |L (v)| ≥ k for all vV, then G is said k‐choosable. A graph is said to be acyclically k‐choosable if the obtained coloring is acyclic. In this paper, we study the links between acyclic k‐choosability of G and Mad(G) defined as the maximum average degree of the subgraphs of G and give some observations about the relationship between acyclic coloring, choosability, and acyclic choosability. © 2005 Wiley Periodicals, Inc. J Graph Theory 51: 281–300, 2006  相似文献   

9.
Given graphs G, H, and lists L(v) ? V(H), v ε V(G), a list homomorphism of G to H with respect to the lists L is a mapping f : V(G) → V(H) such that uv ε E(G) implies f(u)f(v) ε E(H), and f(v) ε L(v) for all v ε V(G). The list homomorphism problem for a fixed graph H asks whether or not an input graph G, together with lists L(v) ? V(H), v ε V(G), admits a list homomorphism with respect to L. In two earlier papers, we classified the complexity of the list homomorphism problem in two important special cases: When H is a reflexive graph (every vertex has a loop), the problem is polynomial time solvable if H is an interval graph, and is NP‐complete otherwise. When H is an irreflexive graph (no vertex has a loop), the problem is polynomial time solvable if H is bipartite and H is a circular arc graph, and is NP‐complete otherwise. In this paper, we extend these classifications to arbitrary graphs H (each vertex may or may not have a loop). We introduce a new class of graphs, called bi‐arc graphs, which contains both reflexive interval graphs (and no other reflexive graphs), and bipartite graphs with circular arc complements (and no other irreflexive graphs). We show that the problem is polynomial time solvable when H is a bi‐arc graph, and is NP‐complete otherwise. In the case when H is a tree (with loops allowed), we give a simpler algorithm based on a structural characterization. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 61–80, 2003  相似文献   

10.
Suppose G=(V, E) is a graph and p ≥ 2q are positive integers. A (p, q)‐coloring of G is a mapping ?: V → {0, 1, …, p‐1} such that for any edge xy of G, q ≤ |?(x)‐?(y)| ≤ pq. A color‐list is a mapping L: V → ({0, 1, …, p‐1}) which assigns to each vertex v a set L(v) of permissible colors. An L‐(p, q)‐coloring of G is a (p, q)‐coloring ? of G such that for each vertex v, ?(v) ∈ L(v). We say G is L‐(p, q)‐colorable if there exists an L‐(p, q)‐coloring of G. A color‐size‐list is a mapping ? which assigns to each vertex v a non‐negative integer ?(v). We say G is ?‐(p, q)‐colorable if for every color‐list L with |L(v)| = ?(v), G is L‐(p, q)‐colorable. In this article, we consider list circular coloring of trees and cycles. For any tree T and for any p ≥ 2q, we present a necessary and sufficient condition for T to be ?‐(p, q)‐colorable. For each cycle C and for each positive integer k, we present a condition on ? which is sufficient for C to be ?‐(2k+1, k)‐colorable, and the condition is sharp. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 249–265, 2007  相似文献   

11.
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. Given a list assignment L={L(v)∣vV} of G, we say G is acyclically L-list colorable if there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper we prove that planar graphs without 4, 7, and 8-cycles are acyclically 4-choosable.  相似文献   

12.
An L-list coloring of a graph G is a proper vertex coloring in which every vertex v gets a color from a list L(v) of allowed colors. G is called k-choosable if all lists L(v) have exactly k elements and if G is L-list colorable for all possible assignments of such lists. Verifying conjectures of Erdos, Rubin and Taylor it was shown during the last years that every planar graph is 5-choosable and that there are planar graphs which are not 4-choosable. The question whether there are 3-colorable planar graphs which are not 4-choosable remained unsolved. The smallest known example far a non-4-choosable planar graph has 75 vertices and is described by Gutner. In fact, this graph is also 3 colorable and answers the above question. In addition, we give a list assignment for this graph using 5 colors only in all of the lists together such that the graph is not List-colorable. © 1997 John Wiley & Sons, Inc.  相似文献   

13.
An acyclic coloring of a graph G is a coloring of its vertices such that: (i) no two adjacent vertices in G receive the same color and (ii) no bicolored cycles exist in G. A list assignment of G is a function L that assigns to each vertex vV(G) a list L(v) of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there exists an acyclic coloring ? of G such that ?(v)∈L(v) for all vV(G). If G is acyclically L-list colorable for any list assignment L with |L(v)|≥k for all vV(G), then G is said to be acyclically k-choosable. Borodin et al. proved that every planar graph with girth at least 7 is acyclically 3-choosable (Borodin et al., submitted for publication [4]). More recently, Borodin and Ivanova showed that every planar graph without cycles of length 4 to 11 is acyclically 3-choosable (Borodin and Ivanova, submitted for publication [7]). In this note, we connect these two results by a sequence of intermediate sufficient conditions that involve the minimum distance between 3-cycles: we prove that every planar graph with neither cycles of lengths 4 to 7 (resp. to 8, to 9, to 10) nor triangles at distance less than 7 (resp. 5, 3, 2) is acyclically 3-choosable.  相似文献   

14.
A list-assignment L to the vertices of G is an assignment of a set L(v) of colors to vertex v for every vV(G). An (L,d)-coloring is a mapping ? that assigns a color ?(v)∈L(v) to each vertex vV(G) such that at most d neighbors of v receive color ?(v). A graph is called (k,d)-choosable, if G admits an (L,d)-coloring for every list assignment L with |L(v)|≥k for all vV(G). In this note, it is proved that every plane graph, which contains no 4-cycles and l-cycles for some l∈{8,9}, is (3,1)-choosable.  相似文献   

15.
Linear choosability of graphs   总被引:1,自引:0,他引:1  
A proper vertex coloring of a non-oriented graph G is linear if the graph induced by the vertices of any two color classes is a forest of paths. A graph G is linearly L-list colorable if for a given list assignment L={L(v):vV(G)}, there exists a linear coloring c of G such that c(v)∈L(v) for all vV(G). If G is linearly L-list colorable for any list assignment with |L(v)|?k for all vV(G), then G is said to be linearly k-choosable. In this paper, we investigate the linear choosability for some families of graphs: graphs with small maximum degree, with given maximum average degree, outerplanar and planar graphs. Moreover, we prove that deciding whether a bipartite subcubic planar graph is linearly 3-colorable is an NP-complete problem.  相似文献   

16.
An interval coloring of a graph G is a proper coloring of E(G) by positive integers such that the colors on the edges incident to any vertex are consecutive. A (3,4)‐biregular bigraph is a bipartite graph in which each vertex of one part has degree 3 and each vertex of the other has degree 4; it is unknown whether these all have interval colorings. We prove that G has an interval coloring using 6 colors when G is a (3,4)‐biregular bigraph having a spanning subgraph whose components are paths with endpoints at 3‐valent vertices and lengths in {2, 4, 6, 8}. We provide several sufficient conditions for the existence of such a subgraph. © 2009 Wiley Periodicals, Inc. J Graph Theory  相似文献   

17.
Let G be a graph and let V0 = {ν∈ V(G): dG(ν) = 6}. We show in this paper that: (i) if G is a 6‐connected line graph and if |V0| ≤ 29 or G[V0] contains at most 5 vertex disjoint K4's, then G is Hamilton‐connected; (ii) every 8‐connected claw‐free graph is Hamilton‐connected. Several related results known before are generalized. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

18.
An edge‐coloring of a graph G is equitable if, for each vV(G), the number of edges colored with any one color incident with v differs from the number of edges colored with any other color incident with v by at most one. A new sufficient condition for equitable edge‐colorings of simple graphs is obtained. This result covers the previous results, which are due to Hilton and de Werra, verifies a conjecture made by Hilton recently, and substantially extends it to a more general class of graphs. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:175‐197, 2011  相似文献   

19.
For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of Gthat is a tree. Further, for a vertex vV(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of Gthat is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle‐free graphs G(and vertices vV(G)) on nvertices is denoted by t3(n) (t(n)). Clearly, t(G, v)?t(G) for all vV(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that Gis connected and triangle‐free. We show that and determine the unique extremal graphs. Thus, we get as corollary that $t_3(n)\ge t_3^{\ast}(n) = \lceil {\frac{1}{2}}(1+{\sqrt{8n-7}})\rceilFor a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of Gthat is a tree. Further, for a vertex vV(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of Gthat is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle‐free graphs G(and vertices vV(G)) on nvertices is denoted by t3(n) (t(n)). Clearly, t(G, v)?t(G) for all vV(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that Gis connected and triangle‐free. We show that and determine the unique extremal graphs. Thus, we get as corollary that $t_3(n)\ge t_3^{\ast}(n) = \lceil {\frac{1}{2}}(1+{\sqrt{8n-7}})\rceil$, improving a recent result by Fox, Loh and Sudakov. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 206–209, 2010  相似文献   

20.
A proper vertex coloring of a graph G is acyclic if G contains no bicolored cycles.Given a list assignment L={L(v)|v∈V}of G,we say that G is acyclically L-colorable if there exists a proper acyclic coloringπof G such thatπ(v)∈L(v)for all v∈V.If G is acyclically L-colorable for any list assignment L with|L(v)|k for all v∈V(G),then G is acyclically k-choosable.In this paper,we prove that every planar graph G is acyclically 6-choosable if G does not contain 4-cycles adjacent to i-cycles for each i∈{3,4,5,6}.This improves the result by Wang and Chen(2009).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号