首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The gas phase reaction kinetics of OH with three di‐amine rocket fuels—N2H4, CH3NHNH2, and (CH3)2NNH2—was studied in a discharge flow tube apparatus and a pulsed photolysis reactor under pseudo‐first‐order conditions in [OH]. Direct laser‐induced fluorescence monitoring of the [OH] temporal profiles in a known excess of the [diamine] yielded the following absolute second‐order OH rate coefficient expressions; k1 = (2.17 ± 0.39) × 10?11 e(160±30)/T, k2 = (4.59 ± 0.83) × 10?11 e(85±35)/T and k3 = (3.35 ± 0.60) × 10?11 e(175±25)/T cm3 molec?1 s?1, respectively, for reactions with N2H4, CH3NHNH2 and (CH3)2NNH2 in the temperature range 232–637 K. All three reactions did not show any discernable pressure dependence on He or N2 buffer gas pressure of up to 530 torr. The magnitude of the weak temperature and the lack of pressure effects of the OH + N2H4 reaction rate coefficient suggest that a simple direct metathesis of H‐atom may not be important compared to addition of the OH to one of the N‐centers of the diamine skeleton, followed by rapid dissociation of the intermediate into products. Our findings on this reaction are qualitatively consistent with a previous ab initio study [ 3 ]. However, in the alkylated diamines, direct H‐abstraction from the methyl moiety cannot be completely ruled out. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 354–362, 2001  相似文献   

2.
The multiple‐channel reactions OH + CH3SCH3 → products, CF3 + CH3SCH3 → products, and CH3 + CH3SCH3 → products are investigated by direct dynamics method. The optimized geometries, frequencies, and minimum energy path are all obtained at the MP2/6‐31+G(d,p) level, and energetic information is further refined by the MC‐QCISD (single‐point) method. The rate constants for eight reaction channels are calculated by the improved canonical variational transition state theory with small‐curvature tunneling contribution over the temperature range 200–3000 K. The total rate constants are in good agreement with the available experimental data and the three‐parameter expressions k1 = 4.73 × 10?16T1.89 exp(?662.45/T), k2 = 1.02 × 10?32T6.04 exp(933.36/T), k3 = 3.98 × 10?35T6.60 exp(660.58/T) (in unit of cm3 molecule?1 s?1) over the temperature range of 200–3000 K are given. Our calculations indicate that hydrogen abstraction channels are the major channels and the others are minor channels over the whole temperature range. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

3.
Kinetics for the reaction of OH radical with CH2O has been studied by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on the geometries optimized at the B3LYP/6‐311+G(3df, 2p) and CCSD/6‐311++G(d,p) levels. The rate constant for the reaction has been computed in the temperature range 200–3000 K by variational transition state theory including the significant effect of the multiple reflections above the OH··OCH2 complex. The predicted results can be represented by the expressions k1 = 2.45 × 10‐21 T2.98 exp (1750/T) cm3 mol?1 s?1 (200–400 K) and 3.22 × 10‐18 T2.11 exp(849/T) cm3 mol?1 s?1 (400–3000 K) for the H‐abstraction process and k2 = 1.05 × 10‐17 T1.63 exp(?2156/T) cm3 mol?1 s?1 in the temperature range of 200–3000 K for the HO‐addition process producing the OCH2OH radical. The predicted total rate constants (k1 + k2) can reproduce closely the recommended kinetic data for OH + CH2O over the entire range of temperature studied. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 322–326, 2006  相似文献   

4.
The mechanism and kinetics of the reactions of CF3COOCH2CH3, CF2HCOOCH3, and CF3COOCH3 with Cl and OH radicals are studied using the B3LYP, MP2, BHandHLYP, and M06‐2X methods with the 6‐311G(d,p) basis set. The study is further refined by using the CCSD(T) and QCISD(T)/6‐311++G(d,p) methods. Seven hydrogen‐abstraction channels are found. All the rate constants, computed by a dual‐level direct method with a small‐curvature tunneling correction, are in good agreement with the experimental data. The tunneling effect is found to be important for the calculated rate constants in the low‐temperature range. For the reaction of CF3COOCH2CH3+Cl, H‐abstraction from the CH2 group is found to be the dominant reaction channel. The standard enthalpies of formation for the species are also calculated. The Arrhenius expressions are fitted within 200–1000 K as kT(1)=8.4×10?20T 2.63exp(381.28/T), kT(2)=2.95×10?21T 3.13exp(?103.21/T), kT(3)=1.25×10?23T 3.37exp(791.98/T), and kT(4)=4.53×10?22T 3.07exp(465.00/T).  相似文献   

5.
A theoretical study of the mechanism and the kinetics for the hydrogen abstraction reaction of methylamine by OH radical has been presented at the CCSD(T)/6‐311 ++G(2d,2p)//CCSD/6‐31G(d) level of theory. Our theoretical calculations suggest a stepwise mechanism involving the formation of a prereactant complex in the entrance channel and a preproduct complex in the exit channel, for the two hydrogen abstraction channels involving the methyl and amine groups. For clarity, the diagram of potential for the reaction is given. The calculated standard reaction enthalpies are ?98.48 and ?76.50 kJ mol?1 and barrier heights are 0.36 and 25.25 kJ mol?1, respectively. The rate constants are evaluated by means of the improved canonical variational transition state theory with small‐curvature tunneling correction (ICVT/SCT) in the temperature range of 299–3000 K. The calculated results show that the rate constants at experimentally measured temperatures are in good agreement with the experimental values. It is shown that the calculated rate constants exhibit a non‐Arrhenius behavior. Moreover, the variational effect is obvious in the calculated temperature range. The dominant product channel is to form CH2NH2 and H2O via hydrogen abstraction from the CH3 group of CH3NH2 by OH in the calculated temperature range. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

6.
The dual‐level direct kinetics method has been used to investigate the multichannel reactions of C2H5I + Cl. Three hydrogen abstraction channels and one displacement process are found for the title reaction. The calculation indicates that the hydrogen abstraction from ? CH2? group is the dominant reaction channel, and the displacement process may be negligible because of the high barrier. The rate constants for individual reaction channels are calculated by the improved canonical variational transition‐state theory with small‐curvature tunneling correction over the temperature range of 220–1500 K. Our results show that the tunneling correction plays an important role in the rate constant calculation in the low‐temperature range. Agreement between the calculated and experimental data available is good. The Arrhenius expression k(T) = 2.33 × 10?16 T1.83 exp(?185.01/T) over a wide temperature range is obtained. Furthermore, the kinetic isotope effects for the reaction C2H5I + Cl are estimated so as to provide theoretical estimation for future laboratory investigation. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

7.
A dual‐level direct dynamics method is employed to reveal the dynamical properties of the reaction of CHF2CF2OCH3 (HFE‐254pc) with Cl atoms. The optimized geometries and frequencies of the stationary points and the minimum energy path (MEP) are calculated at the B3LYP/6‐311G(d,p) level by using GAUSSIAN 98 program package, and energetic information is further refined by the G3(MP2) method. Two H‐abstraction channels have been identified. For the reactant CHF2CF2OCH3 and the two products, CHF2CF2OCH2 and CF2CF2OCH3, the standard enthalpies of formation are evaluated with the values of ?256.71 ± 0.88, ?207.79 ± 0.12, and ?233.43 ± 0.88 kcal/mol, respectively, via group‐balanced isodesmic reactions. The rate constants of the two reaction channels are evaluated by means of canonical variational transition‐state theory (CVT) including the small‐curvature tunneling (SCT) correction over a wide range of temperature from 200 to 2000 K. The calculated rate constants agree well with the experimental data, and the Arrhenius expressions for the title reaction are fitted and can be expressed as k1 = 9.22 × 10?19 T2.06 exp(219/T), k2 = 4.45 × 10?14 T0.90 exp(?2220/T), and k = 4.71 × 10?22 T3.20) exp(543/T) cm3 molecule?1 s?1. Our results indicate that H‐abstraction from ? CH3 group is the main reaction pathway in the lower temperature range, while H‐abstraction from ? CHF2 group becomes more competitive in the higher temperature range. © 2007 Wiley Periodicals, Inc. 39: 221–230, 2007  相似文献   

8.
To investigate the effects of substituents attached to the silicon atom on the thermal rearrangement reactions of α‐silyl alcohols, the thermal rearrangement reactions of dimethylsilyl methanol (CH3)2SiHCH2OH and vinylsilyl methanol CH2?CHSiH2CH2OH were studied by ab initio calculations at the G3 level. Geometries of various stationary points were fully optimized at the MP2(full)/6‐31G(d) and MP2(full)/6‐311G(d,p) levels, and harmonic vibrational frequencies were calculated at the same levels. The reaction paths were investigated and confirmed by intrinsic reaction coordinate (IRC) calculations at the MP2(full)/6‐31G(d) level. The results show that two dyotropic reactions could occur when (CH3)2SiHCH2OH or CH2?CHSiH2CH2OH is heated. One is Brook rearrangement reaction (reaction A), and the dimethylsilyl or vinylsilyl groups migrates from carbon atom to oxygen atom coupled with a simultaneous migration of a hydrogen atom from oxygen atom to carbon atom passing through a double three‐membered ring transition state, forming dimethylmethoxylsilane (CH3)2SiHOCH3 or methoxylvinylsilane CH2?CHSiH2OCH3; the other is a hydroxyl group migration (reaction B) from carbon atom to silicon atom, coupled with a simultaneous migration of a hydrogen atom from silicon atom to carbon atom, via a double three‐membered ring transition state, forming trimethylsilanol (CH3)3SiOH or methylvinylsilanol CH3SiH(OH)CH?CH2. The G3 barriers of the reactions A and B were computed to be 312.8 and 241.4 kJ/mol for (CH3)2SiHCH2OH, and 317.6 and 233.7 kJ/mol for CH2?CHSiH2CH2OH, respectively. On the basis of the MP2(full)/6‐31G(d) optimized parameters, vibrational frequencies, and G3 energies, the reaction rate constants k(T) and equilibrium constants K(T) were calculated using canonical variational transition state theory (CVT) with centrifugal‐dominant small‐curvature tunneling (SCT) approximation over a temperature range of 400–1800 K. The influences of methyl and vinyl groups attached to the silicon atom on reactions are discussed. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

9.
We study dynamics of the CH3 + OH reaction over the temperature range of 300–2500 K using a quasiclassical method for the potential energy composed of explicit forms of short‐range and long‐range interactions. The explicit potential energy used in the study gives minimum energy paths on potential energy surfaces showing barrier heights, channel energies, and van der Waals well, which are consistent with ab initio calculations. Approximately, 20% of CH3 + OH collisions undergo OH dissociation in a direct‐mode mechanism on a subpicosecond scale (<50 fs) with the rate coefficient as high as ~10?10 cm3 molecule?1 s?1. Less than 10% leads to the formation of excited intermediates CH3OH? with excess vibrational energies in CO and OH bonds. CH3OH? stabilizes to CH3OH, redissociates back to reactants, or forms one of various products after intramolecular energy redistribution via bond dissociation and formation on the time scale of 50–200 fs. The principal product is 1CH2 (k being ~10?11), whereas ks for CH2OH, CH2O, and CH3O are ~10?12. The minor products are HCOH and CH4 (k~10?13). The total rate coefficient for CH3 + OH → CH3OH? → products is ~10?11 and is weakly dependent on temperature. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 455–466, 2011  相似文献   

10.
Rate constants for the reactions of OH radicals and Cl atoms with 1‐propanol (1‐C3H7OH) have been determined over the temperature range 273–343 K by the use of a relative rate technique. The value of k(Cl + 1‐C3H7OH) = (1.69 ± 0.19) × 10?12 cm3 molecule?1 s?1 at 298 K and shows a small increase of 10% between 273 and 342 K. The value of k(OH + 1‐C3H7OH) increases by 14% between 273 and 343 K with a value of (5.50 ± 0.55) × 10?12 cm3 molecule?1 s?1 at 298 K, and further when combined with a single independent experimentally determined value at 753 K gives k(OH + 1‐C3H7OH) = 4.69 × 10?17T1.8 exp(422/T) cm3 molecule?1 s?1, which fits each data point to better than 2%. Two well‐established structure–activity relationships for H abstraction by OH radicals give accurate predictions of the rate constant for OH + 1‐C3H7OH, provided the β‐CH2 group is given an increased reactivity of a factor of about 2 over that for the structurally equivalent CH2 group in alkanes at 298 K. A quantitative product analysis was carried out at 298 K for the Cl‐initiated photooxidation of 1‐C3H7OH, using both FTIR and gas chromatography. HCHO, CH3CHO, and C2H5CHO were the only major organic primary products observed, although HCOOH was found in much smaller amounts as a secondary product. A key characteristic of the analysis was that the initial values of the product ratio [CH3CHO]/[C2H5CHO] were effectively constant for NO pressures between 0.15 and 0.3 Torr, but fell by about 35% as the pressure fell to 0.0375 Torr. From a detailed consideration of the mechanism for the oxidation, it is suggested that C2H5CHO, CH3CHO (+HCHO), and 3 molecules of HCHO are formed uniquely from CH3CH2CHOH, CH3CHCH2OH, and CH2CH2CH2OH radicals, respectively. On this basis, use of the product yields gives the branching ratios of 56, 30, and 14% for Cl atom reaction at the α‐, β‐, and γ‐C? H positions in 1‐C3H7OH at 298 K. Given the very low temperature coefficients involved, little change will occur over tropospheric temperature ranges. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 110–121, 2002  相似文献   

11.
We present a direct ab initio dynamics study of thermal rate constants of the hydrogen abstraction reaction of CH4 + O3 → HOOO +CH3. The geometries of all the stationary points are optimized at MPW1K/6‐31+G(d,p), MPWB1K/6‐31+G(d,p), and BHandHLYP/6‐31+G(d,p) levels of theory. The energies are refined at a multi‐high‐level method. The extended Arrhenius expression fitted from the CVT/SCT and μVT/Eckart rate constants of ozonolysis of methane in the temperature range 200–2500 K are kCVT/SCT(T) = 5.96 × 10?29T4.49e(?17321.3/T) and kμVT/Eckart(T) = 7.92 × 10?29T4.46e(?17301.7/T), respectively. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

12.
Theoretical investigation on the gas‐phase degradation reaction mechanism of methamidophos (MAP) and chloramine phosphorus (CHP) with OH radicals is performed. The equilibrium geometries and the harmonic vibration frequencies of the stationary points are obtained at M06‐2x/6‐31+G(d,p) level, and the higher‐level energetic information is further refined at M06‐2x/6–311++G(3df,2p) level. The rate constants for the 14 reaction channels are calculated by the improved canonical variational transition state theory with small‐curvature tunneling correction over the temperature range 200–2000 K. The three‐parameter expressions of k1(T) = 1.53 × 10?19T2.74exp(?1005.12/T), k2(T) = 1.36 × 10?20T3.02exp(?1259.56/T) are given. The total rate constants of all reaction channels of MAP with OH radicals are in good agreement with the available experimental data. Our results indicate that the H‐abstraction reactions on methyl are the major channels for the reaction of MAP and CHP with OH radicals. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
A temperature and pressure kinetic study for the CH3O2 + HO2 reaction has been performed using the turbulent flow technique with a chemical ionization mass spectrometry detection system. An Arrhenius expression was obtained for the overall rate coefficient of CH3O2 + HO2 reaction: k(T) = (3.82+2.79?1.61) × 10?13 exp[(?781 ± 127)/T] cm?3 molecule?1 s?1. A direct quantification of the branching ratios for the O3 and OH product channels, at pressures between 75 and 200 Torr and temperatures between 298 and 205 K, was also investigated. The atmospheric implications of considering the upper limit rate coefficients for the O3 and OH branching channels are observed with a significant reduction of the concentration of CH3OOH, which leads to a lower amount of methyl peroxy radical. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 571–579, 2007  相似文献   

14.
Rate coefficients have been measured for the reaction of OH radicals with methylglyoxal from 260 to 333 K using the discharge flow technique and laser-induced fluorescence detection of OH. The rate coefficient was found to be (1.32±0.30) × 10?11 cm3 molecule?1 s?1 at room temperature, with a distinct negative temperature dependence (E/R of ?830 ± 300 K). These are the first measurements of the temperature dependence of this reaction. The reaction of OH with acetaldehyde was also investigated, and a rate coefficient of (1.45 ± 0.25) × 10?11 cm3 molecule?1 s?1 was found at room temperature, in accord with recent studies. Experiments in which O2 was added to the flow showed regeneration of OH following the reaction of CH3CO radicals with O2. However, chamber experiments at atmospheric pressure using FTIR detection showed no evidence for OH production. FTIR experiments have also been used to investigate the chemistry of the CH3COCO radical formed by hydrogen abstraction from methylglyoxal. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
The multiple‐channel reactions X + CF3CH2OCF3 (X = F, Cl, Br) are theoretically investigated. The minimum energy paths (MEP) are calculated at the MP2/6‐31+G(d,p) level, and energetic information is further refined by the MC‐QCISD (single‐point) method. The rate constants for major reaction channels are calculated by canonical variational transition state theory (CVT) with small‐curvature tunneling (SCT) correction over the temperature range 200–2000 K. The theoretical three‐parameter expressions for the three channels k1a(T) = 1.24 × 10?15T1.24exp(?304.81/T), k2a(T) = 7.27 × 10?15T0.37exp(?630.69/T), and k3a(T) = 2.84 × 10?19T2.51 exp(?2725.17/T) cm3 molecule?1 s?1 are given. Our calculations indicate that hydrogen abstraction channel is only feasible channel due to the smaller barrier height among five channels considered. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2012  相似文献   

16.
The mechanisms for the reaction of CH3SSCH3 with OH radical are investigated at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311++G(d,p) level of theory. Five channels have been obtained and six transition state structures have been located for the title reaction. The initial association between CH3SSCH3 and OH, which forms two low‐energy adducts named as CH3S(OH)SCH3 (IM1 and IM2), is confirmed to be a barrierless process, The S? S bond rupture and H? S bond formation of IM1 lead to the products P1(CH3SH + CH3SO) with a barrier height of 40.00 kJ mol?1. The reaction energy of Path 1 is ?74.04 kJ mol?1. P1 is the most abundant in view of both thermodynamics and dynamics. In addition, IMs can lead to the products P2 (CH3S + CH3SOH), P3 (H2O + CH2S + CH3S), P4 (CH3 + CH3SSOH), and P5 (CH4 + CH3SSO) by addition‐elimination or hydrogen abstraction mechanism. All products are thermodynamically favorable except for P4 (CH3 + CH3SSOH). The reaction energies of Path 2, Path 3, Path 4, and Path 5 are ?28.42, ?46.90, 28.03, and ?89.47 kJ mol?1, respectively. Path 5 is the least favorable channel despite its largest exothermicity (?89.47 kJ mol?1) because this process must undergo two barriers of TS5 (109.0 kJ mol?1) and TS6 (25.49 kJ mol?1). Hopefully, the results presented in this study may provide helpful information on deep insight into the reaction mechanism. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
TrichlorosilaneisanimportantmaterialinplasmaChemicalVaporDeposition (CVD)andinsemiconductordeviceprocess .1 4 Thereactionoftrichlorosilanewithatomichydrogen ,thesimplestfree radicalspecies,hasdrawnconsiderableattention :kineticparametersforH atomreactionared…  相似文献   

18.
The OH hydrogen abstraction and addition with ethylbenzene have been studied in the range 298–1000 K using quantum chemistry methods. The geometries and frequencies of the reactants, transition states, and products were performed at BH and HLYP/6‐311++G(d,p) level, single point calculation for all the stationary points were carried out at CCSD(T) calculations of the optimized structures with the same basis set. Nine different reaction paths are considered corresponding to two side chain, three possible ring hydrogen abstraction, and four kinds different OH addition. The results of the theoretical study indicate that at the room temperature the reaction proceeds almost exclusively through OH addition, and is predicted to occur dominantly at the ortho position, the calculated overall rate constant is 6.72 × 10?12 cm3 molecule?1 s?1, showing a very good agreement with available experimental data. Although negligible at low temperature, at 1000 K ring hydrogen abstraction accounts for about 32% of the total abstraction reaction, and the whole hydrogen abstraction makes up for 30% of the total reaction. This study may provide useful information on understanding the mechanistic features of OH‐initiated oxidation of ethylbenzene. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
The reaction of OH and OD radicals with ethylene in the presence of 1 atm argon and 6 Torr water vapor was studied in the temperature range 343–1173 K. The results reveal three kinetically separate temperature regions: (1) 343–563 K, where the disappearance of OH radical is dominated by the addition of OH to the double bond of ethylene; (2) 563–748 K, where concurrent reactions of addition, the reverse reaction of addition and H-atom abstraction is dominant; and (3) 748–1173 K, where H-atom abstraction is likely the main reaction. The rate for hydrogen abstraction is 2.4 × 10?11 exp[(?2104 ± 125)/T] cm3/molec-s (for OD 2.1 × 10?11 exp[(?2130 ± 172)/T] cm3/molec-s). There was no obvious pyrolysis of ethylene below 1073 K. The study of OD radical with ethylene shows a small isotope effect.  相似文献   

20.
A bimolecular rate constant,kDHO, of (29 ± 9) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with 3,5‐dimethyl‐1‐hexyn‐3‐ol (DHO, HC?CC(OH)(CH3)CH2CH(CH3)2) at (297 ± 3) K and 1 atm total pressure. To more clearly define DHO's indoor environment degradation mechanism, the products of the DHO + OH reaction were also investigated. The positively identified DHO/OH reaction products were acetone ((CH3)2C?O), 3‐butyne‐2‐one (3B2O, HC?CC(?O)(CH3)), 2‐methyl‐propanal (2MP, H(O?)CCH(CH3)2), 4‐methyl‐2‐pentanone (MIBK, CH3C(?O)CH2CH(CH3)2), ethanedial (GLY, HC(?O)C(?O)H), 2‐oxopropanal (MGLY, CH3C(?O)C(?O)H), and 2,3‐butanedione (23BD, CH3C(?O)C(?O)CH3). The yields of 3B2O and MIBK from the DHO/OH reaction were (8.4 ± 0.3) and (26 ± 2)%, respectively. The use of derivatizing agents O‐(2,3,4,5,6‐pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O‐bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible DHO/OH reaction mechanisms based on previously published volatile organic compound/OH gas‐phase reaction mechanisms. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 534–544, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号