首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2,4,5,7-Tetranitro-9-fluorenone (1b) reacts readily with n-butanethiol in dipolar aprotic solvents with selective substitution of nitro groups by butylsulfanyl groups in positions 2 and 7 (2, 3); the 2,5-isomer 4 was formed only as a minor product (<1%). Condensation of fluorenones 2-4 with malononitrile yielded 9-dicyanomethylene derivatives 5-7, which showed strong intramolecular charge transfer (lambda approximately 510-560 nm) and were found to sensitize the photoconductivity of carbazole-containing polymer films. Oxidation of sulfides 2-4 gave sulfoxide 8 or sulfones 9-11, which then were converted into their corresponding dicyanomethylene derivatives 12-15. All these novel acceptors showed three reversible single-electron reduction waves (cyclic voltammetry) yielding radical anion, dianion, and radical trianion; moreover, acceptors 13-15 showed also a fourth reduction wave, representing reversible tetraanion formation. Substitution of the oxygen of the carbonyl group in the fluorenones by a dicyanomethylene group increased the thermodynamic stability (K(SEM) growth) of the radical anion; K(SEM) ranged from 3 x 10(5) to 3 x 10(9) M(-1). CV measurements characterize compounds 3, 4 (EA = 1. 86-1.89 eV) as poor acceptors, 2, 6-11 (EA = 2.13-2.31 eV) as moderate acceptors, and 5, 12-15 (EA = 2.53-2.66 eV) as strong electron acceptors. Charge-transfer complex (CTC) formation between acceptors 9, 10, 13, 14, and anthracene as a donor was monitored by the appearance of additional low-energy bands in the visible region (CTC bands) of their electron absorption spectra. Increasing the EA of the acceptors from 9-fluorenones to the corresponding 9-dicyanomethylenefluorenes increases the complexation constants K(CTC) by 2.5-3 times, while sulfonyl substituents present substantial steric hindrance for complexation (as compared to the nitro group), decreasing K(CTC) values. Two CTCs for acceptors 14 and 17 with tetrathiafulvalene (TTF) were obtained, and their structures were solved by single-crystal X-ray diffractometry, giving the stoichometries 14:TTF, 2:3, and 17:TTF:PhCl, 1:1:0.5. In the former complex the packing motif is a mixed.DDAD'A. stack; in the latter complex the D and A moieties form unusually close CT pairs, which pack in a herringbone motif.  相似文献   

2.
《中国化学》2018,36(9):845-850
The arylthio‐substituted tetrathiafulvalenes (Ar‐S‐TTFs) are electron donors having three reversible states, neutral, cation radical, and dication. The charge‐transfer (CT) between Ar‐S‐TTFs ( TTF1 — TTF3 ) and iodine (I2) is reported herein. TTF1 — TTF3 show the CT with I2 in the CH2Cl2 solution, but they are not completely converted into cation radical state. In CT complexes of TTF1 — TTF3 with I2, the charged states of Ar‐S‐TTFs are distinct from those in solution. TTF1 is at cation radical state, and TTF2 — TTF3 are oxidized to dication. The iodine components in complexes show various structures including 1‐D chain of V‐shaped (I5), and 2‐D and 3‐D iodine networks composed of I2 and (I3).  相似文献   

3.
Orientational control of functional molecules is essential to create complex functionalities as seen in nature; however, such artificial systems have remained challenge. Herein, we have succeeded in controlling rotational isomerism of μ-oxo silicon phthalocyanine (SiPc) oligomers to achieve an external-stimuli-responsive orientational ordering using intermolecular interactions of tetrathiafulvalene (TTF). In this system, three modes of orientations, free rotation, eclipsed conformation, and staggered conformation, were interconverted in response to the oxidation states of TTF, which varied interactions from association due to formation of mixed-valence TTF dimer to dissociation due to electrostatic repulsion between TTF dications. Furthermore, a stable performance of oligomers as a cathode material in a Li-ion battery proved that the one-dimensionally stacked, rotatable structure of SiPc oligomers is useful to control the orientation of functional molecules toward molecular electronics.  相似文献   

4.
A dinuclear Ni(II) complex involving tetrathiafulvalene (TTF) radicals as ligands has been prepared and characterized, [Ni2(mu-Cl)2(L*+)2(I3)4(I2)3.(H2O)2.(C4H8O)3 (1), L = 4,5-bis(2-pyridylmethylsulfanyl)-4',5'-ethylenedithiotetrathiafulvalene. There are two types of intramolecular magnetic exchange interactions, namely one ferromagnetic Ni(II)-Ni(II) and one antiferromagnetic Ni(II)-TTF*+. This study is new in the respect of revealing a magnetic exchange interaction between a TTF*+ radical and a paramagnetic transition metal ion. This is due to the fact of a direct binding of the transition metal ion to the skeleton of the TTF*+ radical.  相似文献   

5.
6.
A new chromium complex with ethynyltetrathiafulvalene (TTF)-type ligands, [CrCyclam(C≡C-5-methyl-4'5'-ethylenedithio-TTF)(2)]OTf ([1]OTf), was synthesized. The cyclic voltammetry of the complex shows two reversible oxidation waves owing to the first and second oxidation of the TTF unit. The electrochemical oxidation of [1]OTf in a Bu(4)NClO(4) or Bu(4)NBF(4) solution of a 1:1 acetonitrile-chlorobenzene mixture gave isostructural crystals of [1][ClO(4)](2)(PhCl)(2)(MeCN) and [1][BF(4)](2)(PhCl)(2)(MeCN), where two mixed-valence TTF units of adjacent complexes form a dimer radical cation. The crystal structures are characterized by an alternating chain of S = 3/2 Cr(3+)Cyclam units and S = ? (TTF)(2)(+) dimers. These two paramagnetic components are connected directly by an ethynyl group, resulting in a strong intrachain spin-spin interaction of 2J/k(B) = -30 and -28 K for [ClO(4)](-) and [BF(4)](-) salts, respectively (H = -2J∑(i)S(i)·S(i+1)). Both salts show a weak ferromagnetic transition at 23 K thanks to interchain antiferromagnetic interaction between TTF dimers. The remanent magnetizations and coercive forces of nonoriented samples at 1.8 K are 0.016 μ(B) and 90 mT for the [ClO(4)](-) salt and 0.010 μ(B) and 50 mT Oe for the [BF(4)](-) salt, respectively. The weak ferromagnetism is attributed to the Dzyaloshinsky-Moriya interaction between adjacent TTF dimers and/or the single-ion anisotropy of [1](2+).  相似文献   

7.
Zhu QY  Liu Y  Lu W  Zhang Y  Bian GQ  Niu GY  Dai J 《Inorganic chemistry》2007,46(24):10065-10070
A protonated bifunctional pyridine-based tetrathiafulvalene (TTF) derivative (DMT-TTF-pyH)NO3 and a copper(II) complex Cu(acac)2(DMT-TTF-py)2 have been obtained and studied. Electronic spectra of the protonated compound show a large ICT (intramolecular charge transfer) band shift (Deltalambda=136 nm) compared with that of the neutral compound. Cyclic voltammetry also shows a large shift of the redox potentials (DeltaE1/2(1)=77 mV). Theoretical calculation suggests that the pyridium substituent is a strong pi-electron acceptor. Crystal structures of the protonated compound and the metal complex have been obtained. The dihedral angle between least-squares planes of the pyridyl group and the dithiole ring might reflect the intensity of the ICT effect between the TTF moiety and the pyridyl group. It is also noteworthy that the TTF moiety could be oxidized to TTF2+ dication by Fe(ClO4)(3).6H2O when forming a metal complex, while the protonated TTF derivative can only be oxidized to the TTF*+ radical cation by Fe(ClO4)(3).6H2O even with an excess amount of the Fe(III) salt, which can be used to control the oxidation process to obtain neutral TTF, TTF*+ radical cation, or TTF2+ dication.  相似文献   

8.
Photoinduced electron transfer has been observed in a molecular triad, consisting of a porphyrin (P) covalently linked to a tetrathiafulvalene (TTF) and a fullerene derivative (C(60)), in the different phases of the liquid crystal E-7 and in a glass of 2-methyltetrahydrofuran (2-MeTHF) by means of time-resolved electron paramagnetic resonance (EPR) spectroscopy. In both solvents, an EPR signal observed immediately after excitation has been assigned to the radical pair TTF(*+)-P-C(60)(*-), based on its magnetic interaction parameters and spin polarization pattern. In the 2-MeTHF glass and the crystalline phase of E-7, the TTF(*+)-P-C(60)(*-) state is formed from the TTF-(1)P-C(60) singlet state via an initial TTF-P(*+)-C(60)(*-) charge-separated state. Long-lived charge separation ( approximately 8 mus) for the singlet-born radical pair is observed in the 2-MeTHF glass at cryogenic temperatures. In the nematic phase of E-7, a high degree of ordering in the liquid crystal is achieved by the molecular triad. In this phase, both singlet- and triplet-initiated electron transfer routes are concurrently active. At room temperature in the presence of the external magnetic field, the triplet-born radical pair (T)(TTF(*+)-P-C(60)(*-)) has a lifetime of approximately 7 mus, while that of the singlet-born radical pair (S)(TTF(*+)-P-C(60)(*-)) is much shorter (<1 mus). The difference in lifetimes is ascribed to spin dynamic effects in the magnetic field.  相似文献   

9.
At room temperature, the reaction of 2-[4,5-bis(methylsulfanyl)-1,3-dithiol-2-ylidene-]-4,5-bis(2-cyanoethylsulfanyl)-1, 3-dithiole (CM-TTF) with mercury chloride resulted in a black radical salt constructed by dimeric cations and chloromercurate anions in formula (CM-TTF)2Hg2Cl6. The S···S stacking of 3.289(3) and 3.334(3) Å within the TTF dimer are very strong in comparing with those of other TTF radical salts. Effective C···C stacking (3.349(10) Å) was also found within the dimeric structure.  相似文献   

10.
A mixed-valence state of the cation radical tetrathiafulvalene dimer, [(TTF)2]+*, is generated by the electrochemical oxidation of a stacked TTF dimer accommodated within an organic-pillared coordination cage. This mixed-valence species is remarkably stable (t1/2 = approximately 1 day at room temperature in aqueous solution under air) and clearly characterized by cyclic voltammogram and electronic absorption spectroscopy.  相似文献   

11.
Two donor-acceptor [3]catenanes-composed of a tetracationic molecular square, cyclobis(paraquat-4,4'-biphenylene), as the π-electron deficient ring and either two tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) containing macrocycles or two TTF-butadiyne-containing macrocycles as the π-electron rich components-have been investigated in order to study their ability to form TTF radical dimers. It has been proven that the mechanically interlocked nature of the [3]catenanes facilitates the formation of the TTF radical dimers under redox control, allowing an investigation to be performed on these intermolecular interactions in a so-called "molecular flask" under ambient conditions in considerable detail. In addition, it has also been shown that the stability of the TTF radical-cation dimers can be tuned by varying the secondary binding motifs in the [3]catenanes. By replacing the DNP station with a butadiyne group, the distribution of the TTF radical-cation dimer can be changed from 60% to 100%. These findings have been established by several techniques including cyclic voltammetry, spectroelectrochemistry and UV-vis-NIR and EPR spectroscopies, as well as with X-ray diffraction analysis which has provided a range of solid-state crystal structures. The experimental data are also supported by high-level DFT calculations. The results contribute significantly to our fundamental understanding of the interactions within the TTF radical dimers.  相似文献   

12.
The syntheses and characterization of two new tetrathiafulvalene (TTF) derivatives bearing pyridine-based substituents and 1,5'-dimethyl-6-oxoverdazyl radicals are described. The TTF-pyridine and bipyridine aldehydes were prepared via a palladium-catalyzed cross-coupling reaction between mono(tributylstannyl)tetrathiafulvalene (3) and the appropriate formylpyridyl halides (4). The radical precursors, the corresponding 1,2,4,5-tetrazanes, were prepared by condensation of the bis(1-methylhydrazide) of carbonic acid with the TTF bearing pyridyl aldehyde. Oxidation of tetrazanes 8 and 9 with 1,4-benzoquinone afforded the donor radicals 1 and 2 as 1:1 complexes with hydroquinone. Both complexes are stable in the solid state and their electronic properties have been characterized by EPR, cyclic voltammetry, and UV/vis spectroscopy. The TTF core of both compounds was oxidized both chemically and electrochemically to afford the corresponding cation diradical species. The electronic properties of both donor radicals have been probed by cyclic voltammetry, UV-vis spectroscopy, and preliminary EPR measurements.  相似文献   

13.
The well-known influence of long perfluorinated chains on the structures and stability of amphiphilic molecules in liquid crystalline mesophases or mesoscopic micellar arrangements is evaluated here in the realm of crystalline materials based on rigid aromatic molecules bearing only a limited number of CF(3) moieties. Tetrathiafulvalene (TTF) derivatives bearing one or two CF(3) groups, that is, (Z)- and (E)-(CF(3))(2)TTF ((Z)-1, (E)-1), EDT-TTF-CF(3) (2), and EDT-TTF(CF(3))(2) (3) (EDT=ethylenedithio) are prepared from the 1,3-dipolar reaction of methyl 4,4,4-trifluorotetrolate with ethylenetrithiocarbonate. The structures of neutral (Z)-1, (E)-1, 2, and 3 as indicated by single-crystal X-ray diffraction measurements reveal the recurrent formation of layered structures with a strong segregation of the fluorinated moieties and formation of fluorous bilayers, attributed to the amphiphilic character of those TTF derivatives upon CF(3) functionalization, and without need for longer C(n)F(2n+1) (n>1) perfluorinated chains. The short intermolecular distance between outer C==C double bonds observed in the layered structure of (E)-1 allows a solid-state [2+2] photocyclization with formation of chiral dyads incorporating the characteristic cyclobutane ring. These dyads containing two dihydrotetrathiafulvalene moieties facing each other exhibit reversible oxidation to the mixed-valence radical cation state and organize in the solid-state into the same layered structures with fluorous bilayers.  相似文献   

14.
The preparation of the novel paramagnetic nickel dithiolene complex Ni(F2pdt)2-* (F2pdt2-: 2,2-difluoro-1,3-propanediyldithioethylene-1,2-dithiolate) and its X-ray crystal structure as n-Bu4N+ salt are described. (n-Bu4N)[Ni(F2pdt)2] (2) crystallizes in the orthorhombic system, space group Pna2(1) with a = 21.379(4) A, b = 8.9702(18) A, and c = 18.527(4) A. The radical anions are isolated from each other by the bulky n-Bu4N+ cations and exhibit a Curie-type magnetic behavior. Two reversible redox waves corresponding to the redox couples Ni(F2pdt)2(2-/-*) and Ni(F2pdt)2(-*/0) are observed at -0.55 and 0.30 V vs SCE, illustrating the electron withdrawing effect of the CF2 substituents. As a consequence, (TTF)3(BF4)2 oxidation of the radical anion does not afford the neutral Ni(F2pdt)2(0) but a TTF salt formulated as [TTF](3)[Ni(F2pdt)2]3[CH2Cl2]. It crystallizes in the triclinic system, space group P1 with a = 12.330(3) A, b = 12.726(3) A, c =15.706(3) A, alpha = 91.10(3), beta = 110.78(3), and gamma = 116.01(3). Donor and acceptor moieties are organized into (TTF)3(2+) and [Ni(F2pdt)2]3(2-) trimers whose dicationic and dianionic charges have been inferred from the intramolecular bond lengths evolution and the singlet-triplet magnetic behavior. These trimers arrange orthogonally to each other into chess-board-like slabs, characterized by a segregation of the CF2 fragments and further stabilized by weak C-H.F interactions. Extended Hückel calculations show that only the nickel dithiolene complex trimer actually contributes to the magnetic susceptibility.  相似文献   

15.
Optically pure anionic complexes of pyridinecarboxamide ligands, N(2),N(6)-bis((R)-α-methylbenzyl)pyridine-2, 6-dicarboxamide H(2)(R,R-L(1)) and N(2),N(6)-bis((S)-1-methoxypropan-2-yl)pyridine-2, 6-dicarboxamide H(2)(S,S-L(2)) have been synthesised and fully characterised. The complexes: (18-crown-6)K[Co(III)(R,R-L(1))(2)], (18-crown-6)K[Fe(III)(R,R-L(1))(2)] and K[Co(III)(S,S-L(2))(2)]·3H(2)O show interesting extended structures from 0D discrete units through 1D zigzag chains to 2D honeycomb layers. The complex anions were used in the synthesis of radical cation salts with tetrathiafulvalene (TTF). The salts (TTF)[Co(III)(R,R-L(1))(2)] and (TTF)[Co(III)(S,S-L(2))(2)]·EtOAc were characterised by single crystal X-ray diffraction and conductivity measurements. Both compounds comprise mono-oxidised TTF molecules and exhibit similar layered structures with no direct TTF stacking but in which phenyl substituents from the complex anion or co-crystallised ethyl acetate alternate with TTF(+) units. Solution spectroscopic and cyclic voltammetric evidence points to the formation of soluble assemblies between TTF(+) and the counterion which correspond to the stoichiometry observed by crystallography and other methods in the solid state.  相似文献   

16.
The template-directed synthesis of a bistable tripodal [4]rotaxane, which has cyclobis(paraquat-p-phenylene) (CBPQT4+) as the pi-electron-deficient rings, and tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene units as the pairs of pi-electron-rich recognition sites located on all three legs of the tripodal dumbbell, is described. The chemical and electrochemical oxidation of the [4]rotaxane and its tripodal dumbbell have allowed us to unravel an unprecedented TTF.+ radical cation dimerization. In fact, two types of TTF dimers, namely, the radical cation dimer [TTF.+]2 and the mixed-valence one [(TTF)2].+, have been observed at room temperature for the tripodal dumbbell, whereas, in the case of the [4]rotaxane, only the radical cation dimer [TTF.+]2 is formed. This anomaly can be explained if it is accepted that most of the neutral TTF units in the [4]rotaxane are encircled by CBPQT4+ rings, which renders the formation of the mixed-valence dimer [(TTF)2].+ highly unfavorable.  相似文献   

17.
Maciej Skibiński  Enno Lork 《Tetrahedron》2009,65(50):10348-3885
Several new molecular tweezers with tetrathiafulvalene (TTF) arms as well as mono-TTF derivatives bearing 3,5-di-tert-butylbenzylthio groups to provide enhanced solubility were prepared starting from a bis-cyanoethyl-protected tetrathiafulvalene derivative. The X-ray crystallographic analysis of 3 and 7a showed highly distorted TTF groups and absence of close TTF-TTF contacts in the crystalline state. Comparative cyclic voltammetry (CV) measurements demonstrated that through space distance-dependent TTF-TTF interactions take place in the TTF-containing molecular tweezers, leading to electronic pairing with formation of mixed valence [TTF]2+ species and splitting of the first oxidation wave. TTF-containing molecular tweezers were successfully tested as receptors for several electron-deficient substances.  相似文献   

18.
A new family of pi-extended TTF analogues (3a-c) and D-pi-A chromophores (5a-c), in which the electroactive units (1,3-dithiole rings and 2,2-dicyanovinyl groups) are connected through a pyridine bridge with a meta substitution pattern, is reported. The redox behavior of these compounds has been investigated by cyclic voltammetry and theoretical calculations performed at the B3P86/6-31G** level. Unlike many pi-extended TTF derivatives, the 1,3-dithiole rings in compounds 3a-c do not behave independently and two oxidation processes are observed with an anodic separation ranging from 50 to 150 mV. Calculations show that electrons are equally extracted from both dithiole rings. A biradical structure is predicted for the dication state due to the near-degeneracy of the HOMO and HOMO - 1 orbitals. The presence of both donor (D) and acceptor (A) fragments in conjugates results in irreversible oxidation and reduction processes associated with the 1,3-dithiole ring and with the 2,2-dicyanovinyl moiety, respectively. An electrochemical-chemical-electrochemical (ECE) process takes place for all the compounds reported. The chemical process implies the dimerization of the radical cation for compounds 5 and the oligomerization of the biradical dication for compounds 3. The ECE process therefore generates new neutral dimeric (5) or oligomeric (3) species that incorporate the TTF vinylogue core.  相似文献   

19.
The tris-tetrathiafulvalene (TTF) macrocycles 3 with a large end-cavity were effectively synthesized from the readily available tetrakis(cyanoethylthio)TTF by means of a selective deprotection/realkylation sequence followed by an intramolecular coupling reaction. Crystar structure analyses revealed that the neutral molecules include two (3a) or one chloroform molecule (3b) as solvent of crystallization inside the cavity, whereas the I3- salt of 3b, obtained by electrocrystallization, has a molecular structure which is different from that of the neutral molecule in that the cavity has completely collapsed.  相似文献   

20.
A family of triads composed of C(60) attached by a rigid spacer to two identical TTF moieties has been synthesized, and some of the isomers have been isolated and characterized by UV-vis spectroscopy, LDI-TOF-MS, and HMBC NMR spectroscopy. AM1 semiempirical calculations of the dipolar moments and the heats of formation of the different isomers have been carried out in order to verify their assignments. Oxidation and reduction of the triads affords the derived radical ion systems, TTF(+*)-C(60)-TTF(+*) and TTF-C(60)(-*)-TTF, which were studied by EPR spectroscopy. Spin density distributions of these radical cations and radical anions show that the unpaired electron is located mainly on the TTF and fullerene moieties, respectively. However, while the EPR signals obtained from the radical cations are very similar for all the isomers, the structured signals observed for the radical anions arising from the coupling of the unpaired electron with the hydrogen atoms of the methylene bridges in the spacer show that there is a strong influence of the isomerism on the spin distribution. Importantly, the theoretical calculations of the spin density distributions of the radical anions fit well with the experimental EPR results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号