首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
全固态薄膜锂/锂离子电池的研究进展   总被引:1,自引:0,他引:1  
本文介绍了全固态薄膜锂/锂离子电池发展;对全固态薄膜锂/锂离子电池最近的研究进展进行了综述分析,并指出了今后研究的方向。  相似文献   

2.
邱振平  张英杰  夏书标  董鹏 《化学学报》2015,73(10):992-1001
固体电解质不存在易燃等安全问题, 发展固态锂电池技术是解决液体电解质锂电池安全问题的根本途径. 随着社会对大体积锂离子电池需求的增长以及人们对电池的安全性关注度的日益提高, 发展固态锂离子电池已迫在眉睫. 制备性能良好的全固态锂电池的关键在于获得高室温离子导电率的固体电解质以及在电极与电解质之间形成良好的接触面. 大量的研究集中在制备高室温导电率的固体电解质, 目前已经制备出能与液体电解质相媲美的高室温导电率的固体电解质, 但固态锂电池的高倍率性能仍然较差, 原因是在电极与固体电解质的界面处具有较高的阻抗. 关于固态锂电池电极与电解质界面的研究文章相对较少. 本文简要介绍了一些具有高室温导电率的氧化物及硫化物电解质, 着重分析了全固态锂电池电极与电解质界面处具有高阻抗的原因以及减少界面阻抗的界面改性方法.  相似文献   

3.
全固态薄膜锂离子电池具有易微型化与集成化等优点,因此,非常适合为微系统供电。负极对全固态薄膜锂离子电池的性能有重要影响。现有电池通常采用金属锂作为负极,然而其枝晶生长问题及低的热稳定性限制了相应电池在工业、军事等高温、高安全场合应用。为此,本文系统研究了LiNbO3薄膜的电化学性能,结果表明:LiNbO3薄膜呈现高比容量(410.2 mAh·g-1)、高倍率(30C时比容量80.9 mAh·g-1)和长循环性能(2000圈循环后的容量保持率为100%),以及高的室温离子电导率(4.5×10-8 S·cm-1)。在此基础上,基于LiNbO3薄膜构建出全固态薄膜锂离子电池Pt|NCM523|LiPON|LiNbO3|Pt,其展现出较高的面容量(16.3μAh·cm-2)、良好的倍率(30μA·cm-2下比容量1.9μAh·cm-2)及长循环稳定性(300圈循环后的容量保持率...  相似文献   

4.
null 《化学进展》2009,21(1):227-234
固体氧化物燃料电池(SOFC)要长期可靠运行,必须具有较高的稳定性。本文从SOFC内阻的主要来源出发,详细分析了影响电池长期稳定性、特别是引起性能衰减的主要因素,并研究其衰减机理。通过对电解质、阴极、阳极及连接材料等关键材料的选择及性能稳定性进行分析,系统论述了阴极与其它材料的相互反应、阳极性能变化以及连接材料表面氧化层等诸多引起SOFC性能衰减的不利因素。在氧化、还原气氛和密封效果等方面对电池长期稳定性的影响也进行了阐述。通过对电池性能衰减的原因及其衰减机理进行分析,对于SOFC长期运行稳定性、进而商业化应用具有一定的理论和实际意义。  相似文献   

5.
全固态锂离子电池具有安全性能高、能量密度大、工作温度区间广等优点, 是锂离子电池领域的研究热点. 固体电解质的开发是全固态锂离子电池实现应用的先决条件, 目前国内外研究比较广泛、应用前景较好的固体电解质主要有聚氧乙烯及其衍生物体系的聚合物电解质、LiPON薄膜电解质以及玻璃态硫化物体系的无机电解质三种. 近两年,在固体电解质的研究已取得很大进展的基础上, 人们正在将研究重点转向全固态电池结构设计及生产技术上, 并不断有样品电池面世. 本文从固体电解质的发展历史、最新研究进展、电池生产技术以及产业化应用前景这几个方面, 分别对以上三种体系的电解质及其电池进行综述, 以探索全固态锂离子电池的商品化前景.  相似文献   

6.
本文总结了近年来纳米薄膜锂离子电池电极材料的研究情况,特别是本课题组在这方面的工作进展.我们从纳米颗粒和纳米结构两方面对各种纳米电极材料进行了分类和归纳,对于纳米颗粒组成的薄膜电极材料,除了对传统的锂一金属氧化物(LiMO2,LiMn2O4等)电极材料和聚阴离子型(LiFePO4等)电极材料薄膜化的研究做了介绍之外,着...  相似文献   

7.
薄膜塑料锂离子电池的初步研究   总被引:4,自引:0,他引:4  
薄膜塑料锂离子电池的初步研究①董全峰**杨汉西*艾新平胡晓宏李升宪(武汉大学化学系武汉430072)固态聚合物锂二次电池在过去十几年中一直是高技术研究中的热点.虽然新的聚合物电解质不断出现,有关结构与功能的认识不断深化,但已知的聚合物电解质在干态下室...  相似文献   

8.
9.
塑料化薄膜锂离子电池的制造技术   总被引:8,自引:0,他引:8  
通过比较不同聚合物骨架材料与增塑剂所制备的聚合物膜的性能 ,优选出合适的基质骨架材料和增塑剂 .在此基础上 ,探索了塑料化聚合物薄膜电极的工业化制造方法 ,优化了聚合物电解质隔膜与正负极极片的配比 ,探讨塑料化薄膜电极的复合方式 ,并对所制备的塑料化薄膜锂离子电池电性能进行了考察 ,结果表明 :薄膜塑料锂离子电池具备与液态锂离子电池相近的电化学性能 .  相似文献   

10.
采用磁控溅射法在铜箔集流体上沉积得到了厚度约2 μm的非晶硅薄膜。X-射线衍射(XRD)、高分辨率透射电镜(HRTEM)和选区电子衍射(SAED)分析表明,该薄膜为非晶态。扫描电镜(SEM)结果表明,该硅电极在电化学吸、放锂循环后体积膨胀率为300%,但电池依然保持良好的循环寿命。在1.5~0.005 V (vs Li+/Li)和0.1 mA·cm-2条件下,该薄膜电极循环100 次后容量仍能保持在0.47 mAh·cm-2以上,为初始容量的84%。每周容量衰减率仅为初周的0.16%。HRTEM和SAED结果表明,该薄膜在电化学吸、放锂循环后仍为非晶态,这可能是其具有良好电化学循环寿命的主要原因。  相似文献   

11.
应用真空蒸发法在泡沫铜基底上制备锡薄膜负极.XRD、SEM分析表征薄膜的物相结构及其微观形貌,并测试了材料的电化学性能.结果表明,泡沫铜基底的三维结构增强了活性物质与基底的结合力.在同一基底温度下,锡颗粒随蒸发时间延长逐渐增大,电池电化学性能降低;而在同一时间内,升高基底温度,颗粒无明显变化,电池循环寿命有了很大提高.样品A″电池(基底温度:200℃,蒸发时间:0.5 h)经100次充放电循环后比容量仍达407.3 mAh·g-1.  相似文献   

12.
钠离子电池凭借钠资源丰富、价格低廉在大规模储能领域有着重要应用前景. 然而,钠离子相对锂离子较大的半径和质量限制了它在电极材料中的可逆脱嵌,导致其电化学性能不佳. 因此研发稳定、高效储钠的高比能电极材料是钠离子电池实用化的关键. 另外,进一步优化与电极材料相匹配的电解质来实现高安全、长寿命钠离子电池的构建,推动其商业化进程,也是迫切需要解决的问题. 本文主要对室温钠离子电池关键材料(包括正极、负极和电解质材料)的研究进展进行简要综述,并探讨了其面临的困难及可行的解决方案,为钠离子电池的发展提供一定参考依据.  相似文献   

13.
向兴德  卢艳莹  陈军 《化学学报》2017,75(2):154-162
钠离子电池作为一种新型的化学电源,因钠资源储量丰富、成本低廉等优势,在规模储能领域具有应用前景,近年来受到了人们的广泛关注.为了获得比能量高、循环寿命长和快速充放电能力强的先进钠离子电池,人们正致力于开发比容量高、循环性能好和倍率性能佳的储钠电极材料和离子电导率高、电化学窗口宽的功能电解液,并取得了重要进展.目前,有前景的正极材料主要有高容量的层状氧化物、高电位的氟磷酸盐和长寿命的磷酸盐;可用的负极材料主要包括循环稳定性强的钛基层状氧化物和碳材料、比容量大的金属/非金属单质和低成本的金属化合物;有效的功能电解液有酯类电解液和醚类电解液.本综述详细总结了上述几类电极材料和电解液的最新研究进展,重点介绍了它们的电化学性质、科学难题及解决策略.  相似文献   

14.
童震坤  方姗  郑浩  张校刚 《化学学报》2016,74(2):185-190
以二氧化锗和二水合醋酸锌为原料,采用水热法制备了锗酸锌纳米棒,并将其与氧化石墨烯复合,制备了石墨烯包覆的锗酸锌纳米棒三维复合材料. SEM等测试表明,锗酸锌纳米棒均匀地穿插在石墨烯片中,阻止了石墨烯片之间相互堆垛,而石墨烯片层之间相互连接,形成三维的空间导电网络,提高了材料的电子导电性.电化学测试表明,石墨烯片作为稳定的框架,能够有效缓冲活性物质在脱嵌锂过程中产生的体积变化,在500 mA·g-1电流密度下循环190次后, Zn2GeO4@RGO复合材料的嵌锂容量仍有1189.5 mAh·g-1;在3.2 A·g-1的大电流密度下,嵌锂容量达到449.5mAh·g-1,表明该复合材料具有优异的长循环稳定性和良好的倍率性能.  相似文献   

15.
The accelerating development of technologies requires a significant energy consumption, and consequently the demand for advanced energy storage devices is increasing at a high rate. In the last two decades, lithium‐ion batteries have been the most robust technology, supplying high energy and power density. Improving cathode materials is one of the ways to satisfy the need for even better batteries. Therefore developing new types of positive electrode materials by increasing cell voltage and capacity with stability is the best way towards the next‐generation Li rechargeable batteries. To achieve this goal, understanding the principles of the materials and recognizing the problems confronting the state‐of‐the‐art cathode materials are essential prerequisites. This Review presents various high‐energy cathode materials which can be used to build next‐generation lithium‐ion batteries. It includes nickel and lithium‐rich layered oxide materials, high voltage spinel oxides, polyanion, cation disordered rock‐salt oxides and conversion materials. Particular emphasis is given to the general reaction and degradation mechanisms during the operation as well as the main challenges and strategies to overcome the drawbacks of these materials.  相似文献   

16.
吴济今  孙正  傅正文 《无机化学学报》2008,24(11):1761-1766
采用脉冲激光溅射Cr和P粉的混合靶成功制备了CrP薄膜,选区电子衍射(SAED)和光电子能谱(XPS)分析显示经过真空原位400℃退火以后,薄膜主要由多晶态的CrP组成。非原位HRTEM和SEM测试结果表明CrP薄膜在充放电前后的形貌有较大的改变。SAED、充放电和循环伏安测试证实了CrP和锂的电化学反应机理如下:CrP在Li+的驱动下,生成了Cr和Li3P。在其后的充放电过程中,发生了Li在LiP中可逆的嵌入和脱出反应。由于CrP首次容量高达1 168 mAh·g-1以及在0.7 V左右具有平稳的放电平台,显示了它可能成为一种新型的锂离子电池的负极材料。  相似文献   

17.
锂离子电池薄膜锡负极材料的制备及容量衰减机理研究   总被引:1,自引:0,他引:1  
以电镀的方法在铜基底上沉积薄膜锡作为锂离子电池负极材料. 运用X射线衍射、扫描电镜、电化学循环伏安、电化学充放电和交流阻抗等多种方法对其结构和性能进行表征和研究. 结果表明所制备的薄膜锡电极主要为四方晶系结构, 其初始放电(嵌锂)容量为709 mAh•g-1, 充电(脱锂)容量为561 mAh•g-1. 电化学循环伏安研究发现在嵌/脱锂过程中薄膜锡经历了多种相变过程. 电化学阻抗谱结果说明, 首次嵌锂过程中当电极电位达到1.2 V在电极表面形成SEI膜, 而当电极电位低于0.4 V表面SEI膜出现破裂, 归因于体积膨胀所致. SEM研究表明30次充放电循环后薄膜锡负极出现龟裂现象.  相似文献   

18.
Zn1-xMgxO (x = 0, 0.18) thin films were fabricated on the copper substrates by radiofrequency magnetron sputtering using the high pure argon as a sputtering gas. The Zn1-xMgxO films were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and galvanostatic tests. The electrochemical test showed an improved electrochemical performance of Zn0.82EMg0.18O thin film as an anode material for lithium ion batteries.  相似文献   

19.
应用机械合金化法制备了两种不同组分的Si-Ag复合材料.扫描电镜(SEM)、X射线衍射(XRD)、充放电测试和循环伏安法对该材料的微观形貌、相组成及电化学性能.研究表明,组成原子比为1∶1的复合材料具有很好的循环稳定性和可逆性,在0.2mA·cm-2的电流密度下,经50周循环后可逆容量仍保持300mAh·g-1.实验发现,借助充放电控制,即可有效提高合金材料的循环性能.  相似文献   

20.
碳纳米管自1990年被日本科学家Iijima发现以来[1],由于其独特的结构组成而具有良好的强度和弹性模量、高比表面积、良好的耐腐蚀性和导电性等特点受到了广泛的关注,并已在催化剂载体、纳米电子器件、储能材料、复合功能材料等诸多领域得到应用。多壁碳纳米管(MWCNT)是由多层石墨卷绕而成的同心圆筒,石墨层间距约为0.034nm,管径一般为几十纳米,管长可达数微米,因此多壁碳纳米管具有较高的长径比,可以被看作一维纳米线。由于多壁碳纳米管在管壁之间和管腔之中存在大量空间,为锂离子的嵌入提供了可能,因此近年来关于多壁碳纳米管储锂的研究…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号