首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, it was reported that both dienylfurans and dienylisobenzofurans could react with dimethyl acetylenedicarboxylate (DMAD) to give [8+2] cycloadducts. Understanding these [8+2] reactions will aid the design of additional [8+2] reactions, which have the potential for the synthesis of 10-membered and larger carbocycles. The present Article is aimed to understand the detailed mechanisms of the originally reported [8+2] cycloaddition reaction between dienylisobenzofurans and alkynes at the molecular level through the joint forces of computation and experiment. Density functional theory calculations at the (U)B3LYP/6-31+G(d) level suggest that the concerted [8+2] pathway between dienylisobenzofurans and alkynes is not favored. A stepwise reaction pathway involving formation of a zwitterionic intermediate for the [8+2] reactions between dienylisobenzofurans that contain electron-donating methoxy groups present in their diene moieties and DMAD has been predicted computationally. This pathway is in competition with a Diels-Alder [4+2] reaction between the furan moieties of dienylisobenzofurans and DMAD. When there is no electron-donating group present in the diene moieties of dienylisobenzofurans, the [8+2] reaction occurs through an alternative mechanism involving a [4+2] reaction between the furan moiety of the tetraene and DMAD, followed by a [1,5]-vinyl shift. This computationally predicted novel mechanism was supported experimentally.  相似文献   

2.
The molecular mechanism for the cycloaddition reaction between 2-methylfuran and a masked o-benzoquinone has been characterized using quantum mechanical calculations at the B3LYP/6-31G theory level. An analysis of the results on the reaction pathway shows that the reaction takes place along a polar stepwise mechanism. The first and rate-determining step corresponds to the nucleophilic attack of the furan ring on the doubly conjugated position of the 2,4-dienone system present at the masked o-benzoquinone to give a zwitterionic intermediate. Closure of this intermediate affords the formally [2 + 4] cycloadduct. For the second step two reactive channels have been characterized corresponding to the formation of the formally [2 + 4] and [4 + 2] cycloadducts. Analysis of the energetic results indicates that while the first is the meta regiocontrolling and endo stereocontrolling step, the second one is responsible for the formation of the unexpected formally [2 + 4] cycloadduct. The global and local electrophilicity/nucleophilicity power of the reactants and intermediate have been evaluated to rationalize these results. Density functional theory analysis for these cycloadditions is in complete agreement with the experimental outcome, explaining the reactivity and selectivity of the formation of the formally [2 + 4] cycloadducts.  相似文献   

3.
José A. Sáez 《Tetrahedron》2005,61(31):7538-7545
The mechanism for the Lewis acid induced [4+3] cycloadditions of 2-(trimethylsilyloxy)acrolein with furan has been examined here through DFT calculations at B3LYP/6-31G* level. The mechanism is a three-step process initialized by the nucleophilic attack of furan to the β-conjugated position of acrolein yielding a zwitterionic intermediate. The key step on the formation of the seven-membered ring is the electrophilic attack of the furan residue to the carbonyl carbon in this intermediate. The endo selectivity experimentally observed is reproduced by the calculations.  相似文献   

4.
The molecular mechanisms of the reactions between aryliden-5(4H)-oxazolone 1, and cyclopentadiene (Cp), in presence of Lewis acid (LA) catalyst to obtain the corresponding [4+2] and [4+3] cycloadducts are examined through density functional theory (DFT) calculations at the B3LYP/6-31G* level. The activation effect of LA catalyst can be reached by two ways, that is, interaction of LA either with carbonyl or carboxyl oxygen atoms of 1 to render [4+2] or [4+3] cycloadducts. The endo and exo [4+2] cycloadducts are formed through a highly asynchronous concerted mechanism associated to a Michael-type addition of Cp to the beta-conjugated position of alpha,beta-unsaturated carbonyl framework of 1. Coordination of LA catalyst to the carboxyl oxygen yields a highly functionalized compound, 3, through a domino reaction. For this process, the first reaction is a stepwise [4+3] cycloaddition which is initiated by a Friedel-Crafts-type addition of the electrophilically activated carbonyl group of 1 to Cp and subsequent cyclization of the corresponding zwitterionic intermediate to yield the corresponding [4+3] cycloadduct. The next rearrangement is the nucleophilic trapping of this cycloadduct by a second molecule of Cp to yield the final adduct 3. A new reaction pathway for the [4+3] cycloadditions emerges from the present study.  相似文献   

5.
The photocycloaddition reaction of naphthyl-N-(naphthylcarbonyl)carboxamides (1) was examined under argon and oxygen atmospheres. In addition to the [2 + 2] and [4 + 4] cycloadducts, 3 and 4, respectively, novel 1,8-epidioxides (5) were formed under oxygen atmosphere. The transient absorption at lambda max of 360 nm with the lifetime of 360 ns was observed by laser flash photolysis of 1c and was interpreted as the absorption of biradical intermediate 2. On the basis of the anti stereochemistry of 5, which was different from that of the major [4 + 4] cycloadducts, syn-4, it was deduced that equilibrium between biradical intermediates syn-2 and anti-2 would exist. Retro [2 + 2] cycloaddition of 3 was responsible for the efficient trapping of the biradical intermediate with molecular oxygen. The photocycloaddition of the anthryl derivatives, 9-anthryl-N-(methylethyl)-N-(naphthylcarbonyl)carboxamides (7), afforded the [4 + 4] cycloadducts (8) exclusively in a quantitative yield even under oxygen atmosphere. The absence of trapping with molecular oxygen was interpreted to be due to the lack of retro [4 + 4] cycloaddition of 8.  相似文献   

6.
The pressure-induced redox reaction within the system Cs2[Pd2+I4].I2/Cs2[Pd4+I6] was investigated by means of powder X-ray diffraction. Analogous high-pressure X-ray diffraction experiments were performed on the isostructural compounds Cs2[PdX4].I2 (X = Cl, Br). Additionally, the phase transition of Cs2[PdBr4].I2 to Cs2[PdBr4I2] was characterized by means of Raman scattering experiments as well as theoretical calculations based on density functional theory. On the basis of experimentally determined crystal structure data, a pathway for the topology of the redox reactions was developed and outlined.  相似文献   

7.
用密度泛函理论B3LYP方法详细研究了 催化CO氧化反应的机理. 计算结果表明, O2分子在 和 上吸附能相差不大, 而CO分子在 上吸附要比在 上弱得多. 催化CO氧化反应共有四条反应途径. 最可能反应通道为CO插入 中的Ag—O键形成中间体[Ag—AgC(O—O)O]-, 然后直接分解形成产物CO2和 , 或另一分子CO进攻中间体[Ag—AgC(O—O)O]-形成两分子产物CO2和 . 在动力学上最难进行的反应通道为经历碳酸根双银中间体, 需要克服约0.24 eV的能垒. 催化CO氧化反应活性要高于 .  相似文献   

8.
4-Oxopentanoic acid was characterized experimentally by electrospray ionization using a triple quadrupole and time-of-flight analyzer hybrid system. This compound was chosen as a model substance for small organic compounds bearing an acetyl and a carboxyl group. Collision-induced dissociation experiments at different activation energies were performed to elucidate possible fragmentation pathways. These pathways were also studied on the theoretical level using density functional theory (DFT) B3LYP/6-311++G(3df,3pd)//B3LYP/6-31+G(d)+ZPVE calculations. CO2 ejection from the [M-H](-) anion of 4-oxopentanoic acid was observed and the fragmentation pathway studied by DFT reveals a new concerted mechanism for CO2 elimination accompanied by an intramolecular proton transfer within a pentagonal transition state structure. Successive elimination of water and CO from the [M-H](-) anion of 4-oxopentanoic acid was also observed. A rearrangement in the primary deprotonated ketene anion produced after water elimination was found on the theoretical level and leads to CO elimination from the primary product anion [M-H-H2O](-). Energy diagrams along the reaction coordinates of the fragmentation pathways are presented and discussed in detail. Mulliken charge distributions of some important structures are presented.  相似文献   

9.
用密度泛函理论B3LYP方法详细研究了Ag_2~-催化CO氧化反应的机理.计算结果表明,O2分子在Ag_2~-和Au_2~-上吸附能相差不大,而CO分子在Ag_2~-上吸附要比在Ag_2~-上弱得多.Ag_2~-催化CO氧化反应共有四条反应途径.最可能反应通道为CO插入Ag2O_2~-中的Ag—O键形成中间体[Ag—AgC(O—O)O]-,然后直接分解形成产物CO2和Ag2O-,或另一分子CO进攻中间体[Ag—AgC(O—O)O]-形成两分子产物CO2和Ag_2~-.在动力学上最难进行的反应通道为经历碳酸根双银中间体,需要克服约0.24eV的能垒.Ag_2~-催化CO氧化反应活性要高于Au_2~-.  相似文献   

10.
The Diels-Alder reaction of substituted cyclohexadienes with substituted phenylacetylenes offers an attractive alternative for the synthesis of biaryl compounds via a two-step cycloaddition/cycloelimination pathway. Quantum mechanical calculations using B3LYP and M06-2X density functional methods for the reaction of 2-chloro-6-nitrophenylacetylene with 1-carbomethoxy-cyclohexadiene show the reaction proceeds by a stepwise diradical [4+2] cycloaddition followed by concerted [2+4] cycloelimination of ethylene. [2+2] cycloadducts are also the result of stepwise addition. [2+2] cycloadducts isomerize to [4+2] cycloadducts via diradical pathways, which involve the same diradical intermediate in cycloaddition. There is also a competitive conrotatory ring opening followed by trans-cis double bond isomerization pathway of the [4.2.0] bicycle (the [2+2] cycloadduct) to give the cis,cis,cis-1,3,5-cyclooctatriene.  相似文献   

11.
The mechanisms, structures of all stationary points involved, and kinetic and thermodynamic parameters of the Rh(I)-catalyzed intramolecular [3+2] cycloaddition reactions of 1-ene- and 1-yne-vinylcyclopropanes (1-ene-VCPs and 1-yne-VCPs) have been investigated using density functional theory (DFT) calculations. The computational results showed that the [3+2] reactions of 1-ene/yne-VCPs studied here occur through a catalytic cycle of substrate-catalyst complex formation, cyclopropane cleavage, alkene/alkyne insertion, and reductive elimination. Alkene/alkyne insertion is the rate- and stereoselectivity-determining step of these multistep [3+2] cycloadditions. The experimentally observed high reactivity of 1-yne-VCPs compared to 1-ene-VCPs is well rationalized by the differences of steric effects in the alkyne/alkene insertion transition states. DFT calculations unveiled that the relative orientation of the tethers in the 1-ene/yne-VCPs plays a key role in controlling the stereochemistry of the [3+2] cycloadducts. In addition, DFT calculation results are used to explain why, in some cases, the formation of the β-hydride elimination byproduct can compete with the [3+2] pathway.  相似文献   

12.
In the presence of an excess of pyridine ligand L, osmium tetroxide oxidizes tertiary silanes (Et(3)SiH, (i)Pr(3)SiH, Ph(3)SiH, or PhMe(2)SiH) to the corresponding silanols. With L = 4-tert-butylpyridine ((t)Bupy), OsO(4)((t)Bupy) oxidizes Et(3)SiH and PhMe(2)SiH to yield 100 +/- 2% of silanol and the structurally characterized osmium(VI) mu-oxo dimer [OsO(2)((t)Bupy)(2)](2)(mu-O)(2) (1a). With L = pyridine (py), only 40-60% yields of R(3)SiOH are obtained, apparently because of coprecipitation of osmium(VIII) with [Os(O)(2)py(2)](2)(mu-O)(2) (1b). Excess silane in these reactions causes further reduction of the OsVI products, and similar osmium "over-reduction" is observed with PhSiH(3), Bu(3)SnH, and boranes. The pathway for OsO(4)(L) + R(3)SiH involves an intermediate, which forms rapidly at 200 K and decays more slowly to products. NMR and IR spectra indicate that the intermediate is a monomeric Os(VI)-hydroxo-siloxo complex, trans-cis-cis-Os(O)(2)L(2)(OH)(OSiR(3)). Mechanistic studies and density functional theory calculations indicate that the intermediate is formed by the [3 + 2] addition of an Si-H bond across an O=Os=O fragment. This is the first direct observation of a [3 + 2] intermediate in a sigma-bond oxidation, though such species have previously been implicated in reactions of H-H and C-H bonds with OsO(4)(L) and RuO(4).  相似文献   

13.
14.
Cycloadditions of o-thioquinones (o-TQs) with 1,3-dienes could proceed via either a [2 + 4] or a [4 + 2] mechanism. Under kinetic control and with acyclic dienes the reaction affords the spiro cycloadducts 5deriving from the [2 + 4] path as the main products. Under thermodynamic control, or with cyclic dienes, the o-TQs behave as heterodienes to give the benzoxathiin derivatives 4, in most cases with complete regioselectivity. In the present computational study, DFT calculations were performed in order to achieve a deep understanding of both [2 + 4] and [4 + 2] paths. The reactions of three o-TQs with six 1,3-dienes were thoroughly investigated at the B3LYP/TZVP//B3LYP6-31G level, and the two reaction mechanisms were then compared, evidencing that [2 + 4] cycloadditions are kinetically favored, strongly asynchronous, or even unconcerted, while [4 + 2] reactions are thermodynamically favored, quite asynchronous, but undoubtedly concerted. Moreover, the observed regioselectivity was rationalized by mean of the FMO theory and by comparison of the activation energies for different pathways.  相似文献   

15.
The cycloadditions of cyclopentadiene with diphenylketene and dichloroketene are studied by a combination of kinetic and product studies, kinetic isotope effects, standard theoretical calculations, and trajectory calculations. In contrast to recent reports, the reaction of cyclopentadiene with diphenylketene affords both [4 + 2] and [2 + 2] cycloadducts directly. This is surprising, since there is only one low-energy transition structure for adduct formation in mPW1K calculations, but quasiclassical trajectories started from this single transition structure afford both [4 + 2] and [2 + 2] products. The dichloroketene reaction is finely balanced between [4 + 2] and [2 + 2] cycloaddition modes in mPW1K calculations, as the minimum-energy path (MEP) leads to different products depending on the basis set. The MEP is misleading in predicting a single product, as trajectory studies for the dichloroketene reaction predict that both [4 + 2] and [2 + 2] products should be formed. The periselectivity does not reflect transition state orbital interactions. The (13)C isotope effects for the dichloroketene reaction are well-predicted from the mPW1K/6-31+G** transition structure. However, the isotope effects for the diphenylketene reaction are not predictable from the cycloaddition transition structure and transition state theory. The isotope effects also appear inconsistent with kinetic observations, but the trajectory studies evince that nonstatistical recrossing can reconcile the apparently contradictory observations. B3LYP calculations predict a shallow intermediate on the energy surface, but trajectory studies suggest that the differing B3LYP and mPW1K surfaces do not result in qualitatively differing mechanisms. Overall, an understanding of the products, rates, selectivities, isotope effects, and mechanism in these reactions requires the explicit consideration of dynamic trajectories.  相似文献   

16.
[reaction: see text] Photorearrangement of tetraalkoxycarbonyl-substituted cyclohexadiene derivatives of C(60) yields not only well-known bis(fulleroid) but also bis(methano)fullerene. Existence of a labile and structurally new intermediate is observed in the reaction mixture. The discovery of the compound suggests the existence of another possible pathway giving those two products other than the widely accepted [4 + 4]/[2 + 2 + 2] mechanism.  相似文献   

17.
The reactions of alkynyldihaloboranes and alkynyldialkylboranes with butadiene have been explored by using DFT methods at the B3LYP level with the 6-31G basis set. Transition structures for the concerted [4+2] cycloaddition have been found for the alkynylborane derivatives. Along with these, another reactive pathway has been found for the cycloaddition process with transition structures of high [4+3] character. The transition structures for the 1,4-alkynylboration processes have also been found. The geometries computed for the cycloaddition transition structure with high [4+3] character and the 1,4-alkynylboration transition structures are surprisingly similar though leading to different products. IRC calculations suggest that the [4+3] cycloaddition and alkynylboration pathways are associated by a zwitterionic structure.  相似文献   

18.
The outcome of the cycloaddition between activated ketenes and alpha,beta-unsaturated imines has been investigated both experimentally and theoretically. Our results indicate that activated monosubstituted ketenes yield exclusively [2 + 2] cycloadducts. Disubstituted activated ketenes yield [2 + 2] and/or [4 + 2] cycloadducts. In one case, an unexpected piperidin-2-one has been obtained, although its relative abundance with respect to the corresponding [2 + 2] or [4 + 2] cycloadducts can be minimized by the proper choice of experimental conditions. The ability of different ab initio and semiempirical methods to account for these results has been tested. The best agreement between theory and experiment is achieved at the MP2/6-31G level of theory, with solvent effects taken into account. The semiempirical hamiltonian AM1, at the RHF level, tends to overestimate the stability of the transition structures leading to six-membered cycloadducts, whereas 3 x 3CI-HE/AM1 and CASSCF(2,2)/6-31G methods tend to overestimate the stability and the biradical character of the transition structures leading to [2 + 2] cycloadducts.  相似文献   

19.
Absolute bond dissociation energies (BDEs) of glycylglycine (GG) and glycylglycylglycine (GGG) to sodium and potassium cations and sequential bond energies of glycine (G) in Na+G2 were determined experimentally by threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. Experimental results showed that the binding energies follow the order of Na+ > K+ and M+GGG > M+GG > M+G. Theoretical calculations at the B3LYP/6-311+G(d) level show that all complexes had charge-solvated structures (nonzwitterionic) with either [CO,CO] bidentate or [N,CO,CO] tridentate coordination for M+GG complexes, [CO,CO,CO] tridentate or [N,CO,CO,CO] tetradentate coordination for M+GGG complexes, and [N,CO,N,CO] tetradentate coordination for Na+G2. Ab initio calculations at three different levels of theory (B3LYP, B3P86, and MP2(full) using the 6-311+G(2d,2p) basis set with geometries and zero-point energies calculated at the B3LYP/6-311+G(d) level) show good agreement with the experimental bond energies. This study demonstrates for the first time that TCID measurements of absolute BDEs can be successfully extended to biological molecules as complex as a tripeptide.  相似文献   

20.
The cobalt-catalyzed cyclotrimerization of bis(4-pyridyl)acetylene affords hexakis(4-pyridyl)benzene in moderate yield. Alkylation with n-butyltriflate gives hexakis(4-(N-butylpyridylium))benzene triflate (1 6+), which can be reduced with Na/Hg in DMF to neutral 10. A single-crystal X-ray diffraction structure reveals that 1 0 has a chair-cyclohexane-like core and a [6]radialene structure. Cyclic voltammetry shows that 1 6+ is reversibly reduced to 1 2+ in one four-electron step and 1 2+ is reversibly reduced to 1 0 in one two-electron step. A reduction by four electrons at one potential is unprecedented for a molecule in which the electrochemically active centers are in electronic communication. The large structural transformation from 1 6+ to 1 0 is responsible for the "potential inversion" in the cyclic voltammetry, and DFT calculations suggest a possible structure for the stable intermediate 1 2+. A comparison is made to the electrochemistry and structural transformations in a previously prepared [4]radialene analogue of 1 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号