首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Using a plasma channel produced by an ultrashort laser pulse, we have studied the laser triggering and guiding of a positive leader from the tip of a 2-m vertical rod standing on the bottom plane of a 7-m plane-plane gap. The purpose of this setup was to reproduce in the laboratory the electric field conditions leading to the onset of a positive upward leader from a ground rod as a downward negative leader is approaching during a thunderstorm, in order to demonstrate the working principle of a possible future laser lightning rod. The leader triggering properties of the laser-created plasma channel have been studied as a function of the synchronization of the laser pulse with the voltage impulse applied to the gap. We show that the laser pulse reduces the inception voltage of the leader compared to its normal value and that the laser plasma channel guides the propagation of the upward leader at a velocity ten times higher than that of an ordinary leader, with a significantly lower charge per unit length. We show that laser guiding of the leader significantly reduces the breakdown voltage of the gap and that the effect of the laser channel at the end of a lightning rod can be compared quite favorably with the effect of an additional metal rod of the same length.  相似文献   

2.
This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves–streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures—sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures—plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g., He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path—the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology.  相似文献   

3.
The interaction of intense, ultra-short laser pulses (USLP) with a surface of transparent dielectrics is considered. The combination of multi-photon absorption and impact ionization generates a plasma layer at the dielectric boundary. Interaction with the plasma self-consistently determines the amount of reflected, transmitted and absorbed light, and the spatial distribution of electron density. In the present paper, we model the interaction of USLP with transparent dielectrics. We calculate the evolution of electron density profiles and the variation of reflection, transmission and absorption of laser radiation during the pulse. We show that the laser-created surface plasma acts as a filter transmitting only the leading edge of the laser pulse. The transmitted energy is approximately fixed, nearly independent of input pulse energy. The transmitted energy increases with pulse duration. This increased energy is manifested in the formation of cylindrical shock waves directly applicable to recent experiments investigating absorption and shock generation in water. PACS 79.20.Ds; 81.15.Fg; 05.45.Pg  相似文献   

4.
In an ongoing program using ultrashort laser pulses to provoke discharges in air over considerable distances at electric fields below breakdown threshold, we have studied the conditions for the onset of streamers in such laser-produced plasmas, both experimentally and through numerical simulations. The results demonstrate the importance of the electron density and of its gradient on the generation of streamers. Also, a significant reduction of the breakdown voltage for a 30 cm plane-plane gap in air was observed with a laser pulse energy of 15 mJ. Finally, a direct comparison of laser-induced breakdown in air and in nitrogen shows the influence of electron attachment to oxygen on the discharge process  相似文献   

5.
发展了一种描述相对论激光脉冲与稠密等离子体相互作用产生阿秒X射线源的半解析自洽理论.该理论模型不仅可以获得等离子体界面的振荡轨迹、振荡面电场和磁场等物理参数,而且能够精确计算出激光脉冲驱动下阿秒X射线源的频谱,结果与粒子模拟程序一致.理论计算结果表明阿秒X射线源的辐射特性与等离子体界面随时演化过程相关,在周期量级激光场驱动下等离子体界面振荡振幅呈现中心不对称,通过改变激光场的载波包络相位实现对等离子体界面振荡的控制,获得准单阿秒X射线源.  相似文献   

6.
A survey on the mechanisms of powerful terahertz (THz) radiation from laser plasmas is presented.Firstly,an analytical model is described,showing that a transverse net current formed in a plasma can be converted into THz radiations at the plasma oscillation frequency.This theory is applied to explain THz generation in a gas driven by two-color laser pulses.It is also applied to THz generation in a tenuous plasma driven by a chirped laser pulse,a few-cycle laser pulse,a DC/AC bias electric field.These are well verified by particle-in-cell simulations,demonstrating that THz radiations produced in these approaches are nearly single-cycles and linear polarized.In the chirped laser scheme and the few-cycle laser scheme,THz radiations with the peak field strength of tens of MV/cm and the peak power of gigawatt can be achieved with the incident laser intensity less than 10 17 W/cm 2.  相似文献   

7.
A theoretical model was proposed to describe the effects of external bias electric field on terahertz(THz) generated in air plasma. The model predicted that for a plasma in a bias electric field, the amplification effect of the THz wave intensity increases with the increase of the excitation laser wavelength. We experimentally observed the relationship between the THz enhancement effect and the electric field strength at different wavelengths. Experimental results showed a good agreement with the model predictions. These results enhance our understanding of the physical mechanism by which femtosecond lasers excite air to generate THz and extend the practical applications of THz generation and modulation.  相似文献   

8.
Investigations of the parameters of single streamers of nanosecond frequency corona discharge, creating a voluminous low-temperature plasma in extended coaxial electrode systems, are performed. Measurements of the parameters of streamers were made by an isolated probe situated on the outer grounded electrode. Streamers were generated under the action of voltage pulses with a front of 50–300 ns, duration of 100–600 ns, and amplitude up to 100 kV at the frequency of 50–1000 Hz. The pulse voltage, the total current of the corona, current per probe, and glow in the discharge gap were recorded in the experiments. It was established that, at these parameters of pulse voltage, streamers propagate at an average strength of the electric field of 4–10 kV/cm. Increasing the pulse amplitude leads to an increase in the number of streamers hitting the probe, an increase in the average charge of the head of a streamer, and, as a consequence, an increase in the total streamer current and the energy introduced into the gas. In the intervals up to 3 cm, streamer breakdown at an average field strength of 5–10 kV/cm is possible. In longer intervals, during the buildup of voltage after generation of the main pulse, RF breakdown is observed at Еav ≈ 4 kV/cm.  相似文献   

9.
《等离子体物理论文集》2017,57(6-7):252-257
We propose a theoretical model for the generation of electromagnetic waves in the terahertz (THz) frequency range by the optical rectification of a Gaussian laser pulse in a plasma with an applied static electric field transverse to the direction of propagation. A Gaussian laser pulse can exert a transverse component of the quasi‐static ponderomotive force on the electrons at a frequency in the THz range by a suitable choice of the laser pulse width. This nonlinear force is responsible for the density oscillation. The coupling of this oscillation with the drift velocity acquired by electrons due to the applied static electric field leads to the generation of a nonlinear current density. A spatial Gaussian intensity profile of the laser beam enhances the generated THz yield by many folds as compared to a uniform spatial intensity profile.  相似文献   

10.
A model describing the ionization of atoms and ions in a cluster under irradiation by a short laser pulse has been constructed. It is shown that the electron-impact ionization weakly affects the final charge composition, and the main mechanism of ion formation in the cluster is the over-barrier ionization by an electric field. The electric field acting on atoms and ions is the result of combined action of the external laser field and the intrinsic electric field of the cluster. The key parameters of the cluster beam and the laser pulse, which determine the properties of the charge composition of the cluster plasma, have been established.  相似文献   

11.
We consider the interaction of high-intensity laser pulses with underdense plasmas and address the problem of the excitation of strong and stable wake plasma waves with regular electric fields to provide effective acceleration of charged particles over appreciably long distances. It is known that a relativistically strong laser pulse longer than the wavelength of plasma waves, propagating in a plasma is subject to self-modulation. This may result in a nonstationary behavior of the produced plasma wake field/particle dephasing, and reduced net acceleration. In this paper we present the results of 1(2/2)-D and 2(1/2)-D particle in cell (PIC) simulations which demonstrate that regular wake electric fields may be obtained by a properly shaped laser pulse (sharp steepening of its leading front). These results are relevant to the design of the 100 MeV laser wake field electron acceleration experiment that uses a terawatt picosecond CO2 laser and is under construction at the Brookhaven Accelerator Test Facility  相似文献   

12.
Focused propagation of high-power femtosecond laser radiation in air is considered. Based on numerical solution of the nonlinear Schr?dinger equation for complex envelope of light wave electric field, evolution of the beam effective radius is studied. The dependence of the effective (rms) size of a focal spot and the maximally achievable intensity of laser radiation at focal waist on the initial pulse power is established. It is shown that focal spot of tightly focused intensive ultrashort laser radiation can change its size during the pulse passage through the beam waist. This is the consequence of pulse intensity clamping in region of beam focusing caused by gas photoionization and plasma producing. This may prevent laser intensity from its further growth in the focal region and arrest the transversal compression of the beam in the linear focus as a whole.  相似文献   

13.
采用能量40 mJ,脉冲宽度50 fs的超短脉激光脉冲形成的等离子体通道诱发和引导了3—23 cm长间隙的静态高压放电.实验观测显示,等离子体通道整体上能使空气间隙的击穿阈值降低到自然击穿阈值的40%.实验中通过对放电电弧发出的白光信号与激光信号的时间延迟进行分析得到激光引导下梯级先导的发展速度约为107 cm/s. 关键词: 等离子体通道 高压放电  相似文献   

14.
A mathematical model describing the dynamics of a pulsed laser plasma with multiply charged ions, as well as the formation of the accelerated ion flow in an external magnetic field, is developed. Experimental studies and mathematical simulation by the particle-in-cell method are used to determine the role of multiply charged ions in the process of ion implantation into a silicon substrate from the pulsed plasma containing singly and doubly charged titanium ions. The plasma spreads between parallel-plate electrodes (Ti target and Si substrate) along the normal to the surface of the target. Ions are accelerated by high-voltage negative pulses applied to the substrate. It is found that doubly charged ions effectively participate in the implantation process when an external electric field is applied very soon after the laser action on the target. The application of a high-voltage pulse with an amplitude of 50 kV 0.5 μs after a laser pulse leads to ion implantation with an energy close to 100 keV. With increasing delay in the application of the high-voltage pulse, the upper boundary of the energy spectrum of implanted ions is displaced towards lower energies. Comparison of the depth profiles of titanium distribution in silicon calculated from the results of simulation are compared with the experimental profiles shows that the model developed here correctly describes the formation of the high-energy component of the ion flow, which is responsible for defect formation and doping of deep layers of the substrate.  相似文献   

15.
超短超强激光因其极端的物理参数范围以及可用于研究相对论等离子体等特征,成为当前激光驱动磁重联物理的研究热点.通常采用两路激光与平面靶相互作用实现激光驱动磁重联,然而在实验诊断中,由于激光等离子体自身的复杂性导致很难辨别磁重联的物理特征.本文对两路短脉冲激光驱动平面靶磁重联进行了数值模拟,重点分析了靶后电势分布特征和磁重联之间的关系.模拟结果显示,靶后电势分布可以直接影响被加速离子在探测面上的空间分布,因此可用来直接诊断短脉冲激光驱动磁重联实验.  相似文献   

16.
This paper summarizes the research this team has performed over the past few years investigating laboratory electrical breakdown discharges in the presence of a plasma cylinder created by a single ultrashort laser pulse. This work is part of a feasibility study about the control of lightning using laser systems. Our experimental investigations have included discharges (i) in modest (30 cm) air gaps mediated by streamers, and (ii) in large (several meters) ambient air gaps for which the discharge took place through the formation of a leader, the mechanism relevant to large scale natural discharges such as lightning. In order to understand the observations, various physical models have been used, the main results of which are discussed in this paper. To cite this article: F. Vidal et al., C. R. Physique 3 (2002) 1361–1374.  相似文献   

17.
When a strong electric field is applied to nonconducting matter, narrow channels of plasma called streamers may form. Branchlike patterns of streamers have been observed in anode directed discharges. We explain a mechanism for branching as the result of a balance between the destabilizing effect of impact ionization and the stabilizing effect of electron diffusion on ionization fronts. The dispersion relation for transversal perturbation of a planar negative front is obtained analytically when the ratio D between the electron diffusion coefficient and the intensity of the externally imposed electric field is small. We estimate the spacing lambda between streamers and deduce a scaling law lambda approximately D(1/3).  相似文献   

18.
将高功率脉冲激光作用于金属元靶,探测激光诱导等离子体在靶上产生的电学信号.研究了作用激光能量的差异对等离子体电信号的影响,实验结果表明随着激光能量的增加电信号脉冲幅度逐渐增大并趋于饱和.同时,将激光烧蚀过程中的靶材等效为瞬态电流源,初步建立了激光诱导等离子体等效电路模型,并将该模型应用于激光烧蚀金属靶,对靶上电信号的产生机制进行了详细讨论.  相似文献   

19.
In this paper, a two dimensional Particle In Cell‐Monte Carlo Collision simulation scheme is used to examine the THz generation via the interaction of high intensity ultra‐short laser pulses with an underdense molecular hydrogen plasma slab. The influences of plasma density, laser pulse duration and its intensity on the induced plasma current density and the subsequent effects on the generated THz signal characteristics are studied. It is observed that the induced current density in the plasma medium and THz spectral intensity are increased at the higher laser pulse intensities, laser pulse durations and plasma densities. Moreover, the generated THz electric field amplitude is reduced at the higher laser pulse durations. A wider frequency range for the generated THz signal is shown at the lower laser pulse durations and higher plasma densities. Additionally, it is found that the induced current density in hydrogen plasma medium is the dominant factor influencing the generation of THz pulse radiation. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Ultrashort laser-gas interaction is a promising candidate for the intense broad band far-infrared radiation in which the gas ionization and the resultant plasma formation occur consequently. The electron current produced in the process is the most important influential parameter which affects the far-infrared radiation generation. Although the interacting forces of the process are the space charge electric and the laser electromagnetic forces, the effect of the former one, has not been investigated on the gas-plasma THz generation. It is noteworthy that the space charge electric force, due to its effect on the electron distribution, has potential influence on the produced electron current and its consequent emission. Here, a 2D relativistic fluid model is presented in which the ions and the resultant space charge field are incorporated. The model investigates the air ionization, electron-ion plasma formation, and the system's evolution, spatiotemporally. Moreover, as the model is based on the transient electron current, as the source for the electromagnetic pulse radiation, it gives the temporal profile of the radiated field in which the space charge effects are observable. Our results show that the space charge field affects the electron velocity and its resultant current. Therefore, the temporal profiles and amplitudes of the radiated field components are affected and their resemblance to the experimental data is enhanced. The results indicate that the amplitude of the radiated field increases in the presence of the space charge field. In addition, it is shown that the space charge effects become more pronounced with the laser intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号