首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The dynamic viscosity η′ of a dilute solution of poly(L-glutamic acid) (DP = 1370) in a mixed solvent made up of aqueous 0.2M NaCl and dioxane (2:1 by volume) is measured over the pH range 4.2–10 and in the frequency range 2–500 kHz. The frequency dependence of η′ in the helix region (low pH) is interpreted in terms of a model molecule consisting of n rigid helical segments connected by universal joints. The steady-flow viscosity, relaxation time, and high-frequency limiting viscosity at pH 4.75 (helical content 80%) are well explained by this model with n = 5. This value of n is consistent with that estimated from the nucleation parameter σ = 1.4 × 10?3 obtained from the relation between reduced steady-flow viscosity and helical content. The high-frequency values of η′ in the coil region (high pH) are fitted by Peterlin's theory. The internal viscosity seems to arise in part from the polyelectrolytic character of the molecule. An additional relaxation at low frequencies in the coil region is ascribed to rotation of molecules elongated by the electrostatic interaction. The lower value of reduced steady-flow viscosity in the coil region in the mixed solvent compared with that in water is interpreted in terms of the lower degree of effective ionization and the selective solvation of water by the polypeptide. No anomaly is observed in the helix–coil transition region, indicating that the relaxation time for helix–coil equilibrium is less than 10?6sec.  相似文献   

3.
Porous scaffolds based on water-soluble PLGA and CS were prepared. The pores were verified to be alveolate, uniform and continuous. The effects of freezing temperature, freeze-drying time, solid content and molecular weight of reactants on the pore structure of the scaffolds were studied. The scaffold morphology could be adjusted by changing the freezing temperature and solid content of reacting polymer. Their degradation rate can be adjusted by changing the proportion of PLGA and CS. The porosity of scaffolds was higher than 90% and the high swelling ratio showed that these scaffolds had excellent hydrophilic performance. The in vitro culture of chondrocytes indicates that the obtained PLGA/CS porous scaffolds are very promising biomaterials for tissue engineering applications.  相似文献   

4.
Surface-bound layers of poly(L-glutamic acid) prepared by a recently described "grafting-from" method were analyzed with respect to electrical charging and structural alterations upon variation of pH and concentration of the background electrolyte in aqueous solutions. The microslit electrokinetic setup (MES) was utilized for the combined determination of zeta potential and surface conductivity on the basis of streaming potential and streaming current measurements at polypeptide layers in contact with aqueous electrolyte solutions of varied composition. In situ ellipsometry was applied at similar samples immersed in identical aqueous solutions to investigate the influence of the solution pH on the structure of the polypeptide layers. Zeta potential and Dukhin number versus pH plots revealed the dissociation behavior of the surface-bound polypeptides indicating a significant shift of the pK of their acidic side chains correlating with the concentration of the background electrolyte potassium chloride and the related variation of the Debye screening length. Surface conductivity data pointed at a more expanded structure of the polypeptide layer in the fully dissociated state as an increased ion conductance in this part of the interface was determined. The occurrence of a strong increase of the thickness and a corresponding decrease of the refractive index for the coil state of the layer strongly supports the findings of the electrokinetic measurements. This fully reversible "switching" of the layer structure was attributed to helix-coil transitions within the grafted polypeptides induced by the dissociation of carboxylic acid functions of the polypeptide side chains. The shift of the "switching pH" of the surface-bound poly(L-glutamic acid) layers at varied concentrations of the background electrolyte was interpreted as a result of the pK shift of the carboxylic acid groups of the polypeptide side chains. The observed patterns prove that the electrostatic interactions causing this shift occur within but not between the grafted chains.  相似文献   

5.
A vibrational Raman optical activity (ROA) study of a series of alanine peptides in aqueous solution is presented. The seven-alanine peptide Acetyl-OOAAAAAAAOO-Amide (OAO), recently shown by NMR and UVCD to adopt a predominantly poly(l-proline II) (PPII) helical conformation in aqueous solution, gave an ROA spectrum very similar to that of disordered poly(l-glutamic acid) which has long been considered to adopt the PPII conformation, both being dominated by a strong positive extended amide III ROA band at approximately 1319 cm-1 together with weak positive amide I ROA intensity at approximately 1675 cm-1. A series of alanine peptides Ala2-Ala6 studied in their cationic states in aqueous solution at low pH displayed ROA spectra which steadily evolved toward that of OAO with increasing chain length. As well as confirming that alanine peptides can support the PPII conformation in aqueous solution, our results also confirm the previous ROA band assignments for PPII structure, thereby reinforcing the foundation for ongoing ROA studies of unfolded and partially folded proteins.  相似文献   

6.
7.
8.
Polyelectrolyte multilayers of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) were built up using the layer-by-layer (LbL) technique in low pH (3.6, PM3.6) and in neutral pH (7.4, PM7.4) solutions. The multilayers were then treated with a concentrated urea (one kind of denaturant for proteins and polypeptides) solution (8M) and rinsed with corresponding buffer. The buildup and treatment processes were investigated by ultraviolet visible spectroscopy and ellipsometry. The surface morphology was observed by scanning force microscopy (SFM). The inner structures were determined by X-ray reflectometry and circular dichroism spectroscopy (CD). An exponential growth of the optical mass and the layer thickness was observed for both PM3.6 and PM7.4. After urea treatment, a significant mass loss for PM3.6 was found, while no mass change was recorded for PM7.4. The dominant driving force for PM7.4 is electrostatic interaction, resulting in multilayers with an abundant beta-sheet structure, which has higher stability against urea treatment. By contrast, the dominant driving force for PM3.6 is hydrogen bonding and hydrophobic interaction, which are sensitive to the urea treatment. The mechanism is substantiated by molecular mechanics calculation. This has offered a convenient pathway to mediate the multilayer properties, which is of great importance for potential applications.  相似文献   

9.
The enthalpy changes accompanying the dilution and ionization of poly(L-glutamic acid) in water have been measured at 25 degrees C for two degrees of polymerization (DP = 115 and DP = 480) at various degrees of ionization, alpha, for a concentration range from about 0.2 to 0.002 monomol/L. The heat of dilution displays an unusual dependence on the degree of ionization, which is in sharp contrast to the behavior of other weak carboxylic polyelectrolytes, such as poly(acrylic acid). The exothermic heat effects observed at low values of alpha become endothermic for the region where the helix-coil transition is most pronounced, and for high degrees of ionization, they are exothermic again. Evidently, an endothermic heat effect, produced by an additional conformational transition in the dilution process, is superimposed on the exothermic enthalpy of dilution, and it overweighs the latter in the region of alpha where the conformational transition is prevailing. The calorimetric titration curve, which gives the dependence of the heat of ionization, deltaH(i), on alpha, has a maximum and is typical for poly(carboxylic acids) which undergo pH-induced conformational transition, such as poly(methacrylic acid). The values of deltaH(i) obtained at two polymer concentrations indicate that the enthalpy of ionization depends on the polypeptide concentration.  相似文献   

10.
Heterogeneous network polymers composed of rigid polypeptide chains and flexible polyether chains were synthesized. That is, poly(L -glutamic acid) (PLGA) was crosslinked with poly(oxyethylene glycol) (PEG) at various carboxy/hydroxyl mole ratios K. The solubility tests and hydrolysis of heterogeneous network polymers suggest that the crosslinking reaction proceeds by esterification. The dynamic mechanical properties of these polymers(100 Hz, ?100–200°C) are greatly influenced by the presence of a trace of water and the weight per cent of PLGA. In addition, some of these polymers show only one maximum in the temperature dispersion of dynamic loss modulus E″ and tan δ, although their shape is rather broad. The x-ray photographs of these polymers show an amorphous halo or weak Debye-Sherrer rings. These findings suggest that these polymers are not simple adducts; neverthless PLGA and/or PEG domains exist.  相似文献   

11.
High-resolution resonance Raman (RR) and resonance Raman optical activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein backbone. Combining the intrinsic resonance properties of cytochrome c with the surface plasmon enhancement achieved with colloidal silver particles, the surface enhanced resonance Raman scattering (SERRS) and surface enhanced resonance ROA (SERROA) spectra of the protein were successfully obtained at concentrations as low as 1 microM. The assignments of spectral features were based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported, while some disparities were observed between the resonance ROA and SERROA spectra. These differences can be ascribed to perturbations of the physical properties of the protein upon adhesion to the surface of the silver colloids.  相似文献   

12.
13.
Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic acids. Extension of ROA to an even wider range of samples could be facilitated by coupling its structural sensitivity to the low-concentration sensitivity provided by plasmon resonance enhancement. This leads to the new technique of surface enhanced ROA, or SEROA, which is complementary to both SERS and ROA. In this tutorial review, we present a survey of theoretical and experimental work undertaken to develop SEROA and discuss these efforts in the context of the ROA technique, and, based on the authors' work, outline possible future directions of research for this novel chiroptical spectroscopy.  相似文献   

14.
A novel Fmoc-protected chain transfer agent (CTA) was synthesized and applied in the reversible addition-fragmentation chain transfer (RAFT) polymerization of N-isopropylacrylamide (NIPAAm), resulting in well-defined Fmoc-protected PNIPAAm and the amino-end capped PNIPAAm by the subsequent hydrolysis. Poly(N-isopropylacrylamide)-b-poly(l-glutamic acid) (PNIPAAm-b-PLGA) with controlled molecular weight and narrow molecular weight distribution was synthesized successfully via ring-opening polymerization (ROP) of alpha-amino acid N-carboxyanhydrides (NCAs) by using PNIPAAm-NH2 as the macroinitiator. Both pH- and thermo-responsive micellization behaviors of the block copolymer PNIPAAm55-b-PLGA35 in dilute aqueous solution were investigated by means of the pyrene fluorescence, circular dichroism, 1H NMR, transmission electron microscopy and dynamic and static light scattering. Spherical PLGA-core and rod-like PNIPAAm-core micelles are formed in response to pH and temperature. The reversible transition between the PLGA-core and PNIPAAm-core micelles was observed. This work provides a versatile approach for synthesizing well-defined stimuli-responsive polypeptide-based double hydrophilic diblock copolymers (DHBCs), and is of great potential for generating useful stimuli-responsive materials in biomedical applications.  相似文献   

15.
L.D. Barron 《Tetrahedron》1978,34(5):607-610
The Raman optical activity spectra of (2R, 3R) (+)- and (2S,3S) (?)-tartaric acid, (2R, 3R) (+)-dimethyl tartrate, (2R,3R) (?)-2,3-butanediol and (2S, 3S) (+)-dibenzoyl tartaric acid are presented. A large couplet at about 500cm?1 in the first three molecules, which probably originates in deformations of a chiral structural unit, might serve as an indicator of conformation and absolute configuration.  相似文献   

16.
Three cationic surfactants carrying a common hydrocarbon tail (dodecyl group) interact differently with fully ionized poly(L-glutamic acid)(PGA), depending on the type of their ionic head groups. Decrease of pH occurred in the order; dodecylammonium chloride (DAC) > dodecyldimethylammonium chloride (DDAC) > dodecyltrimethylammonium chloride (DTAC). The-helix of PGA was strongly induced by the addition of DAC and DDAC but weakly by DTAC. The induction was inhibited when NaCl concentration was greater than 0.05 M. In the solid state, proton transfer through hydrogen bonds from ionic heads of DDAC to carboxylate groups of the polypeptide was observed. Distortion of circular dichroism spectra occurred at high mixing ratios of surfactant to polymer, due to the aggregation of-helices, as confirmed by light scattering measurements and infrared absorption spectra.  相似文献   

17.
Herein, cisplatin-loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) nanoparticles were evaluated as a potential chemotherapeutic agent against osteosarcoma by using alone or with an i RGD(internalizing RGD, CRGDKDPDC). The release rate of platinum from the cisplatin-loaded nanoparticles CDDP/PLG160-g-m PEG2K(CDDP-NPs) accelerated with the increase of the acidity of the environment. In vitro test demonstrated that CDDP-NPs could inhibit the proliferation of MNNG/Hos osteosarcoma cells with IC50(72 h) of 12.2 μg?m L-1. In vivo test for MNNG/Hos osteosarcoma tumor bearing mice exhibited that CDDP-NPs had comparable or slightly higher efficacy but significantly lower side effects in comparison with free CDDP. The coadministration of i RGD could further enhance the anticancer efficacy of CDDP-NPs against MNNG/Hos osteosarcoma without bringing obvious side effects. Therefore, CDDP-NPs using alone or with i RGD have great potential for the treatment of osteosarcoma.  相似文献   

18.
Poly(lactic acid) is a new biopolymer material which is marketed by Cargill Dow Polymers under the tradename Nature Works*. One major application for this material is biaxially oriented films for food packaging because it possesses excellent barrier for flavor constituents, deadfold and heat sealability. Shrinkage must be minimized when the film is heat sealed for these applications and, therefore, characterization of the orientation of the amorphous phase of PLA films is necessary. Raman spectroscopy methodology has been developed to quantify orientation in PLA films. Bands were assigned to crystalline and amorphous phases of PLA such that orientation in both phases could be monitored. Raman depolarization ratios were used to characterize uniaxial systems but were insufficient for most biaxial draws. A new phenomenon for oriented films involving Raman band shifts was observed in these systems, and was shown to be capable of determining orientation, even for symmetrical biaxially drawn films. The origin of these shifts, as well as their use for the quantification of orientation will be discussed. Further, since the line widths of the bands could be used to quantify crystallinity, both crystallinity and orientation could be determined with one measurement.  相似文献   

19.
The buildup mechanism of polypeptide multilayers prepared by the layer-by-layer deposition of a polyanion (poly(L-glutamic acid) (PGA)) and polycations (poly(L-lysine) (PLL), poly(D-lysine) (PDL), and copoly(DL-lysine)(PDLL)) was reinvestigated by using in situ ATR-IR spectroscopy. A difference spectral technique applied to analyze the spectra indicated that the deposition of both the PGA and PLL (PDL) layers accompanies the formation of secondary structures consisting mainly of the antiparallel pleated sheet (the beta-sheet) structure, and that the formation of the beta-sheet structure cannot always be explained in terms of polyanion/polycation complex formation or charge compensation between the polyanion and polycations, although it has been considered as a major process in the multilayer buildup process. Instead, the present paper proposes the following mechanism. During the deposition of the polyelectrolyte, a small amount of the beta-sheet structures are produced at the interface as a result of charge compensation between a polyelectrolyte and an oppositely charged polyelectrolyte in the multilayer. The beta-sheets act as nuclei from which further propagation of the structure takes place at the solution/multilayer interfaces. The driving force of the buildup process in the new mechanism is a kinetically favorable insolubilization of each polyelectrolyte in solution at the interfaces.  相似文献   

20.
A novel PAA-b-PLGA diblock copolymer is synthesized and characterized that has excellent cell adhesion and biocompatibility. Fluorescent DiO labeling is used to monitor the attachment and growth of hASCs on the film surface, and cell proliferation over time is studied. Results show that PLLA modified by a CS/PAA-b-PLGA multilayer film can promote the attachment of human hASCs and provide an advantageous environment for their proliferation. The multilayer film presents excellent biocompatibility and cell adhesive properties, which will provide a new choice for improving the cell attachment in surface modification for tissue engineering. Hydroxyl, carboxyl and amine groups in the CS/PAA-b-PLGA multilayer film may be combined with drugs and growth factors for therapy and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号