首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Electronic polarization response in hydrogen-bond clusters and liquid configurations of water and methanol has been studied by density functional theory (DFT) and by a polarizable force field based on the chemical potential equalization (CPE) principle. It has been shown that an accurate CPE parametrization based on isolated molecular properties is not completely transferable to strongly interacting hydrogen-bond clusters with discrepancies between CPE and DFT overall dipole moments as large as 15%. This is due to the lack of intermolecular charge transfer in the standard CPE implementation. A CPE scheme for evaluating the amount of transferred charge has been developed. The charge transfer parameters are determined with the aid of accurate DFT calculations using only hydrogen-bond dimer configurations. The amount of transferred charge is found to be of the order of few hundredths of electrons, as already found in recent studies on hydrogen-bond systems. The parameters of the model are then used, without further adjustment, to different hydrogen-bond clustered forms of water and methanol (oligomer and liquid configurations). In agreement with different approaches proposed in literature for studying charge transfer effects, the transferred charge in hydrogen-bond dimers is found to decrease exponentially with the hydrogen-bond distance. When allowance is made for charge transfer according to the proposed scheme, the CPE dipole moments are found to reproduce satisfactorily the DFT data.  相似文献   

2.
Charged liquid droplets are typically generated by a high‐voltage power supply. Herein, a previously unreported method is used for charging liquid droplets: by transferring charge from an insulating solid surface charged by contact electrification to the droplets. Charging the solid surface by contact electrification involves bringing it into contact with another solid surface for generating static charge. Subsequently, water droplets that flow across the surface are found to be charged—thus, the charge is readily transferred from solid to liquid. The charge of the droplets can be tuned continuously from positive to negative by varying the way the solid surface is charged. The amount of charge generated is sufficient for manipulating, coalescing, and sorting the water droplets by solid surfaces charged by contact electrification. This method of generating charged droplets is general, simple, inexpensive, and does not need any additional equipment or power supply.  相似文献   

3.
The transfer of small amounts of charge between neighboring particles can be a significant part of interactions among particles. A model is developed for treating charge transfer (CT) combined with the Drude model for polarizability to create an efficient model for liquid water which includes both CT and polarizability. The model is shown to be accurate for a variety of liquid properties, including the density as a function of temperature and the dielectric constant. A new model for water with CT and polarization is developed and applied to the liquid. The inclusion of CT increases the accuracy of many properties, like the density as a function of temperature, indicating the importance of charge redistribution as induced by other particles. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
5.
6.
The energetics of proton transfer in liquid water investigated by using ab initio calculation. The molecular electronic interaction of hydrated proton clusters in classified into many-body interaction elements by a new energy decomposition method. It is found that up to three-body molecular interaction is essential to describe the potential energy surface. The three-body effect mainly arises from the (non-classical) charge transfer and strongly depends on their configuration. Higher than three-body effects are small enough to be neglected. To simulate the liquid state reactions, two cluster models including all water molecules up to the second shell in the proton transfer reactions are employed. It is shown that these proton transfer reactions only involve small potential energy barriers of a few kcal/mol or less when structural rearrangement of the solvent is induced along the proton movement.  相似文献   

7.
A.c. impedance studies of the ion transfer have evidenced the transient adsorption of xanthene-type anions and other ions having asymmetric charge distribution at the nitrobenzene–water interface. The phase angle of the charge transfer admittance becomes smaller than unity at the potentials beyond the midpoint potential of the ion transfer. This anomaly does not appreciably depend on the sign of the ionic charge or the location of the midpoint potential, as predicted by the theory proposed recently based on the thermodynamic reasoning of the adsorption and ion partitioning of surface active ions in electrochemical liquid–liquid two-phase systems [T. Kakiuchi, J. Electroanal. Chem. 496 (2001) 137].  相似文献   

8.
张强  杨忠志 《物理化学学报》2007,23(10):1565-1571
采用传统水分子力场模型(SPC, TIPnP(n=3-5))和极化模型(POL3, AMOEBA, SPC-FQ, TIP4P-FQ)对水分子二聚体团簇性质进行了比较和研究. 以从头计算和实验数据为依据, 分析水分子在外场作用下体系的静电极化, 电荷转移和分子结构变化. 通过水分子二聚体结合能和各分解能量项评价极化静电势能在双分子结合能中的地位和作用, 以及各水分子力场的适用性. 通过水分子团簇多体相互作用能的计算,展示不同极化水分子力场定量计算极化能量的实际能力. 通过对力场模型结果的对比和分析, 为进一步发展极化力场模型, 并应用到其他体系提供借鉴和依据.  相似文献   

9.
具有高导电性和独特电学性质的金属有机络合物AgTCNQ是一种重要的电荷转移盐.本文采用琼脂作为胶凝剂构成水|1,2-二氯乙烷液液界面;施加电压时银离子由水相穿过水凝胶进入有机相,与TCNQ-反应生成AgTCNQ纳米棒.结果表明液/液界面电化学方法为合成有机金属功能材料的有效途径.  相似文献   

10.
Molecular dynamics simulations of extended simple point charge (SPC/E) water have been performed to study the effects of the truncation of long-range interactions on some calculated bulk properties of the liquid. The mean potential calculated in liquid water is sensitive to the choice of the cutoff center in the water molecule. The pair distribution function is also dependent on this choice, although not as strongly as the mean potential. An analysis is carried out to understand the origin of these effects. A common cutoff center is at the oxygen atom in the water molecule, but our study shows that this choice does not yield a mean potential value consistent with a more accurate estimate when no cutoff is applied. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The water surface properties using the Baranyai-Kiss (BK) model [A. Baranyai and P. T. Kiss, J. Chem. Phys. 133, 144109 (2010)] are studied by molecular dynamics simulation, and compared to popular rigid water potentials, namely to the extended simple point charge (SPC/E) and the transferable interaction potential with 4 points (TIP4P) models. The BK potential is a polarizable model of water with three Gaussian charges. The negative charge is connected to its field-free position by a classical harmonic spring, and mechanical equilibrium is established between this spring force and the force due to the charge distribution of the system. The aim of this study is, on the one hand, to test the surface properties of the new model, and on the other hand, to identify differences between the models listed above. The obtained results reveal that the BK model reproduces very well a number of properties corresponding to liquid-vapor equilibrium, such as the coexisting liquid and vapor densities, saturated vapor pressure or surface tension. Further, this model reproduces excellently the critical point of water even in comparison with a large number of widely used polarizable and nonpolarizable models. The structural properties of the liquid surface of BK water turns out to be very similar to that of the SPC/E model, while the surface of TIP4P water is found to be somewhat less ordered. This finding is related to the fact that the critical temperature of the TIP4P model is lower than that of either SPC/E or BK.  相似文献   

12.
Pursuing our efforts on the development of accurate classical models to simulate radionuclides in complex environments (Réal et al., J. Phys. Chem. A 2010, 114, 15913; Trumm et al. J. Chem. Phys. 2012, 136, 044509), this article places a large emphasis on the discussion of the influence of models/parameters uncertainties on the computed structural, dynamical, and temporal properties. Two actinide test cases, trivalent curium and tetravalent thorium, have been studied with three different potential energy functions, which allow us to account for the polarization and charge‐transfer effects occurring in hydrated actinide ion systems. The first type of models considers only an additive energy term for modeling ion/water charge‐transfer effects, whereas the other two treat cooperative charge‐transfer interactions with two different analytical expressions. Model parameters are assigned to reproduce high‐level ab initio data concerning only hydrated ion species in gas phase. For the two types of cooperative charge‐transfer models, we define two sets of parameters allowing or not to cancel out possible errors inherent to the force field used to model water/water interactions at the ion vicinity. We define thus five different models to characterize the solvation of each ion. For both ions, our cooperative charge‐transfer models lead to close results in terms of structure in solution: the coordination number is included within 8 and 9, and the mean ion/water oxygen distances are 2.45 and 2.49 Å, respectively, for Th(IV) and Cm(III). © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
The surface charge of semiconductor nanoparticles, Q, is an important parameter which determines their electrokinetic behavior, stability in water and polar solvents, functions of optical and electronic devices, self-assembly properties, and interactions with cell membranes. We have developed a simple method for quantitative determination of Q in their native aqueous environment. The method does not require the knowledge of exact atomic structure or make assumptions about effects of drying on charge distribution. The method is based on titration of nanoparticle dispersion with a solution of oppositely charged polyelectrolyte. The point of complete neutralization is recognized as an inflection point on the dependence of fluorescence intensity on the amount of polyelectrolyte added. Thioglycolic acid-stabilized CdTe nanoparticles 2 nm in diameter were found to carry an average Q from -2.6 to -5.5 for pH 7.5 to 10, respectively. This charge is found to be smaller than that calculated theoretically for an analogous structure (i.e., Q = -8), presumably due to adsorption of Cd(2+) ions on the stabilizer shell and on Te atoms with unsaturated valence located on the side planes of CdTe tetrahedrons.  相似文献   

15.
A novel least-squares fitting approach is presented to obtain classical force fields from trajectory and force databases produced by ab initio (e.g., Car-Parrinello) molecular dynamics (MD) simulations. The method was applied to derive effective nonpolarizable three-site force fields for liquid water at ambient conditions from Car-Parrinello MD simulations in the Becke-Lee-Yang-Parr approximation to the electronic density functional theory. The force-matching procedure includes a fit of short-ranged nonbonded forces, bonded forces, and atomic partial charges. The various parameterizations of the water force field differ by an enforced smooth cut-off applied to the short-ranged interaction term. These were obtained by fitting to the trajectory and force data produced by Car-Parrinello MD simulations of systems of 32 and 64 H(2)O molecules. The new water force fields were developed assuming both flexible or rigid molecular geometry. The simulated structural and self-diffusion properties of liquid water using the fitted force fields are in close agreement with those observed in the underlying Car-Parrinello MD simulations. The resulting empirical models compare to experiment much better than many conventional simple point charge (SPC) models. The fitted potential is also shown to combine well with more sophisticated intramolecular potentials. Importantly, the computational cost of the new models is comparable to that for SPC-like potentials.  相似文献   

16.
The recently introduced adaptive force matching (AFM) method is used to develop a significantly improved pair‐wise nonpolarizable potential for water. A rigid version of the potential is also presented to enable larger time steps for biological simulations. In this work, it is demonstrated that the AFM method can be used to systematically assess the importance of each functional term during the construction of a force field. For a water potential, it is established that a single off‐atom charge center (M) in the plane of water outperforms two out‐of‐plane charge sites for reproducing intermolecular forces. The four‐site pair‐wise nonpolarizable force field developed in this work rivals some of the most sophisticated polarizable models in terms of reproducing accurate ab initio forces. The force fields are parameterized to perform best in the temperature range from 0 to 40°C. Equilibrium and dynamical properties calculated with the flexible and rigid force fields are in good agreement with experimental results. For the flexible model, the agreement improves when path integral simulation is performed. These force fields provide high‐quality results at a very low computational cost and are thus well suited to atomistic scale biological simulations. The AFM method provides a mechanism for selecting important terms in force field expressions and is a very promising tool for producing accurate force fields in condensed phases. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

17.
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute∕liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.  相似文献   

18.
Spontaneous micelles formation by ionic surfactants has been detected amperometrically as an appearance of ion transfer across the water–dichloroethane interface noticed from linear dependence between the current and potential (Ohm’s law). At low surfactant concentrations, when its spontaneous aggregation does not occur, the micelles formation facilitated by a potential across the interface has been registered. The transfer of redox inactive proteins through water–dichloroethane interface in the presence of surfactant has been observed voltammetrically. It has been shown, that the presence of protein does not affect thermodynamics of micelles formation, but accelerates kinetics of ion transfer through the interface. The electrochemically controlled transfer of redox inactive proteins through liquid|liquid interface may lead to the development of methods for direct amperometric detection of biomolecules.  相似文献   

19.
The hydrogen bond represents a fundamental intermolecular interaction that binds molecules in vapor and liquid water. A crucial and debated aspect of its electronic structure and chemistry is the charge transfer (CT) accompanying it. Much effort has been devoted, in particular, to the study of the smallest prototype system, the water dimer, but even here results and interpretations differ widely. In this paper, we reassess CT in the water dimer by using charge‐displacement analysis. Besides a reliable estimate of the amount of CT (14.6 me) that characterizes the system, our study provides an unambiguous context, and very useful bounds, within which CT effects may be evaluated, crucially including the associated energy stabilization.  相似文献   

20.
An early rejection scheme for trial moves in adiabatic nuclear and electronic sampling Monte Carlo simulation (ANES-MC) of polarizable intermolecular potential models is presented. The proposed algorithm is based on Swendsen–Wang filter functions for prediction of success or failure of trial moves in Monte Carlo simulations. The goal was to reduce the amount of calculations involved in ANES-MC electronic moves, by foreseeing the success of an attempt before making those moves. The new method was employed in Gibbs ensemble Monte Carlo (GEMC) simulations of the polarizable simple point charge-fluctuating charge (SPC-FQ) model of water. The overall improvement in GEMC depends on the number of swap attempts (transfer molecules between phases) in one Monte Carlo cycle. The proposed method allows this number to increase, enhancing the chemical potential equalization. For a system with 300 SPC-FQ water molecules, for example, the fractions of early rejected transfers were about 0.9998 and 0.9994 at 373 and 423 K, respectively. This means that the transfer moves consume only a very small part of the overall computing effort, making GEMC almost equivalent to a simulation in the canonical ensemble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号