首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel patterning method for conducting polymer films was successfully demonstrated using the concept of bipolar electrochemistry. The local application of an anodic potential to poly(3-methylthiophene) (PMT) and poly(3,4-ethylenedioxythiophene) (PEDOT) on a bipolar electrode (BPE) realized local electrochemical doping and reaction depending on the supporting salt used. The potential applied on the BPE was measured and corresponded well to the patterns. The array-type driving electrode system was able to draw complex patterns in a site-controlled manner.  相似文献   

2.
Spatial variations in electric conductivity and evolutions of band structures of polyaniline (PANI) films have been studied by use of a so-called current-sensing atomic force microscope (CS-AFM) or atomic force microscope current image tunneling spectroscopy (AFM-CITS). PANI films were deposited chemically onto indium-tin oxide- (ITO-) glass substrates, and their thickness and doping levels were controlled by polymerization and acid-doping conditions. The conducting uniformity of the PANI films depends on their doping level and thickness. Conducting domains were observed in fully doped PANI film, even when the bias voltage was reduced to as small as 30 mV. High current flowing regions gradually disappeared when conducting PANI films were partially dedoped. The point-contact current-voltage (I-V) characteristics of conducting tip-polymer/ITO systems were investigated on PANI films with different thickness and degree of doping. Various types of I-V curves representing metallic, semiconducting, and insulating states were obtained depending on the aggregation of polymer chains and doping level of the polymer film. The band gap energies (estimated from the I-V or dI/dV-V curves) of emeraldine base (EB) (undoped polyaniline) films are all higher than 3.8 eV, and a wide distribution of the band gap energies (0-1.1 eV and 0.75-1.8 eV for fully and partially doped PANI thin films, respectively) was found in a single polymer film.  相似文献   

3.
Topart PA  Josowicz M 《Talanta》1994,41(6):909-916
In this paper, the influence of the water content in the acetonitrile/LiClO(4) system on the electrosynthesis and the properties of poly(N-vinylcarbazole), PNVC, films is examined. By using conventional resonant frequency and impedance measurements of an electrochemical quartz crystal microbalance (EQCM), information about the electrochemical, morphological and adhesive properties of the thin conducting films were obtained. By changing the water content of the background electrolyte, the degree of cross-linking (through the vinyl group), the doping level and the morphology of PNVC films vary simultaneously. Two limiting cases of film properties were observed: for less than 10 Vol.% water, a highly doped, porous and cross-linked polymer is synthesized. Above 10 Vol.% water content, a dense and smooth film is deposited. The growth at a constant potential was found to be limited by the diffusion of monomers to the electrode. Films grown from a system containing 20 Vol.% water exhibit better adhesive properties to the substrate than those grown from 2 Vol.% water.  相似文献   

4.
A voltammetric electrode based on a poly(3-methylthiophene) (PMT) film for the differential pulse stripping voltammetric (DPSV) determination of iodide was developed. Gold electrodes were first coated with PMT, and iodide was then doped into the polymer film by electrochemical oxidation of iodide at 0.75 V. The effects of various electrochemical parameters, such as electroyte type and its pH, deposition potential, deposition time, and precipitation time, were examined. Using DPSV, the PMT electrode was found to be suitable for the measurement of iodide concentrations above 1 × 10−9 M. The text was submitted by the authors in English.  相似文献   

5.
Electropolymerization, morphology characterization, and ion transport of poly(3,4-ethylenedioxythiophene) (PEDOT) films doped with different counterions (chloride, ferrocyanide (FCN), and poly(p-styrenesulfonate) (PSS-)) on a platinum electrode were investigated using scanning electrochemical microscopy (SECM) during both potential step (chronocoulometric) and cyclic voltammetric scans. An ultramicroelectrode (UME) tip was positioned close to the surface of a PEDOT-modified substrate electrode, and the responses of both electrodes to a substrate potential step or linear sweep were monitored simultaneously. Chloride or ferrocyanide (FCN) ejection during PEDOT reduction was shown to be a function of the reduction potential. The nature of the cation in the bulk solution was not found to be important in the kinetics of ion transport in PEDOT+/FCN- films. Direct evidence for the incorporation of cations of Ru(NH3)6(3+/2+) in a PEDOT film during its reduction was also obtained by SECM measurements. The adsorption of Ru(NH3)6(3+) in fully oxidized PEDOT+/PSS- films was observed and attributed to ion exchange between the Na+ co-ion of PSS- and Ru(NH3)6(3+) in the bulk solution.  相似文献   

6.
Herein, a route to produce highly electrically conductive doped hydroxymethyl functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) films, termed PEDOT(OH) with metal-like charge transport properties using a fully solution processable precursor polymer is reported. This is achieved via an ester-functionalized PEDOT derivative [PEDOT(EHE)] that is soluble in a range of solvents with excellent film-forming ability. PEDOT(EHE) demonstrates moderate electrical conductivities of 20–60 S cm−1 and hopping-like (i.e., thermally activated) transport when doped with ferric tosylate (FeTos3). Upon basic hydrolysis of PEDOT(EHE) films, the electrically insulative side chains are cleaved and washed from the polymer film, leaving a densified film of PEDOT(OH). These films, when optimally doped, reach electrical conductivities of ≈1200 S cm−1 and demonstrate metal-like (i.e., thermally deactivated and band-like) transport properties and high stability at comparable doping levels.  相似文献   

7.
Conducting polymer diffraction gratings on Au substrates have been created using microcontact printing of C18-alkanethiols, followed by electropolymerization of either poly(aniline) (PANI) or poly(3,4-ethylenedioxythiophene) (PEDOT). Soft-polymer replicas of simple diffraction grating masters (1200 lines/mm) were used to define the alkanethiol template for polymer growth. Growth of PANI and PEDOT diffraction gratings was followed in real time, through in situ tapping-mode atomic force microscopy, and by monitoring diffraction efficiency (DE) as a function of grating depth. DE increased as grating depth increased, up to a limiting efficiency (13-26%, with white light illumination), defined by the combined optical properties of the grating and the Au substrate, and ultimately limited by the loss of resolution due to coalescence of the polymer films. Grating efficiency is strongly dependent upon the grating depth and the refractive index contrast between the grating material and the surrounding solutions. Both PEDOT and PANI gratings show refractive index changes as a function of applied potential, consistent with changes in refractive index brought about by the doping/dedoping of the conducting polymer. The DE of PANI gratings are strongly dependent on the pH of the superstrate solution; the maximum sensitivity (DeltaDE/DeltapH) is achieved with PANI gratings held at +0.4 V versus Ag/AgCl, where the redox chemistry is dominated by the acid-base equilibrium between the protonated (emeraldine salt) and deprotonated (emeraldine base) forms of PANI. Simulations of DE were conducted for various combinations of conducting polymer refractive index and grating depth, to compute sensitivity parameters, which are maximized when the grating depth is ca. 50% of its maximum obtainable depth.  相似文献   

8.
Three types of conducting polymers, polyaniline (PANI), poly(N-methylaniline) (PNMA), poly(N-ethylaniline) (PNEA) were electrochemically deposited on pencil graphite electrode (PGE) surfaces characterized as electrode active materials for supercapacitor applications. The obtained films were electrochemically characterized using different electrochemical methods. Redox parameters, electro-active characteristics, and electrostability of the polymer films were investigated via cyclic voltammetry (CV). Doping types of the polymer films were determined by the Mott-Schottky method. Electrochemical capacitance properties of the polymer film coating PGE (PGE/PANI, PGE/PNMA, and PGE/PNEA) were investigated by the CV and potentiostatic electrochemical impedance spectroscopy (EIS) methods in a 0.1 M H2SO4 aqueous solution. Thus, capacitance values of the electrodes were calculated. Results show that PGE/PANI, PGE/PNMA, and PGE/PNEA exhibit maximum specific capacitances of 131.78 F g?1 (≈ 436.50 mF cm?2), 38.00 F g?1 (≈ 130.70 mF cm?2), and 16.50 F g?1 (≈ 57.83 mF cm?2), respectively. Moreover, charge-discharge capacities of the electrodes are reported and the specific power (SP) and specific energy (SE) values of the electrodes as supercapacitor materials were calculated using repeating chronopotentiometry.  相似文献   

9.
We study electrochemical p- and n-type doping in the well-known light-emitting polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). Doping reactions are characterized using cyclic voltammetry. Optical measurements including photoluminescence and UV/Vis/NIR transmission were performed on doped samples. We find that oxidation in MEH-PPV is a highly reversible reaction resulting in stable freestanding doped films, while the reduced form is unstable and the reaction irreversible. We discuss the dependence of doping reactions on scan rate, film thickness, salt type and concentration, and working electrode type. We observe the development of two additional broad absorption bands in both lightly and heavily doped films accompanied by a slight blueshift in the primary optical transition, suggesting bipolaron band formation. Finally we find that both p and n dopings result in extremely sensitive photoluminescence quenching. We propose a physical model for understanding electrochemical doping in MEH-PPV and the implications this has on the development of such technologies as polymer light-emitting electrochemical cells, electrochromic devices, actuators, and sensors.  相似文献   

10.
Organic thin film transitors (TFTs) with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid), PEDOT:PSS, as the active layer and cross-linked, layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) multilayers as the gate dielectric layer were investigated. A combination of spectroscopic data and device performance characteristics was used to study the behavior of these TFT devices under a variety of controlled environmental test conditions. It was shown that depletion and recovery of the device can be induced to occur by a means that is consistent with the electrochemical oxidation and reduction of water contained in the film. In addition to acting as a reactant, moisture also acts as a plasticizer to control the mobility of other species contained in the film and thereby permits bistable operation of these devices. Raman spectroscopy was used to show that the observed device switching behavior is due to a change in the PEDOT doping level.  相似文献   

11.
The “click” chemistry, Cu(I)-catalyzed azide–alkyne cycloaddition reaction, was applied to covalently functionalize the poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer film with an excellent electron transfer mediator (ferrocene). Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy were used to characterize the ferrocene-grafted PEDOT conducting polymer film, and it was proved that the grafting procedure via click reaction had a high efficiency. The ferrocene groups covalently grafted in the polymer films turned out to own a relatively fast electron transfer rate and show multi-color states via adjusting applied potential.  相似文献   

12.
The Raman spectra of poly(3-methylthiophene) (PMeT) films with different thicknesses, which have beenelectrochemically deposited on a flat stainless steel electrode surface by direct oxidation of 3-methylthiophene in borontrifluoride diethyl etherate (BFEE) at a constant applied potential of 1.38 V (versus SCE), have been investigated byexcitation with a 633-nm laser beam. The spectroscopic results demonstrated that the doping level of PMeT film wasincreasing during film growth. This finding was also confirmed by electrochemical examination. Moreover, the Raman bandsassigned to radical cations and dications in doped PMeT films were found approximately at 1420 and 1400 cm~(-1),respectively. Radical cations and dications coexist on the backbone of PMeT as conductive species and their concentrationsincrease with the increase of doping level. Successive cyclic voltammetry was proved to be an effective approach toimproving the doping level of as-grown thin compact PMeT film.  相似文献   

13.
本文用现场电化学-ESR联合测试的技术, 对电化学聚对萃膜在浓H_2SO_4中的性质进行了研究, 结果表明: 聚对苯膜具有高的电导率和相对低的自旋磁化率, 极化子与偶极化子为主要导电者, 并在一定的电位下相互转化, 自旋粒子有很大的离域性。膜中链与链之间可能存在部分的氧桥结构, 而引起体系结构的某些变化, 使聚对苯膜的电导提高以及掺杂容易进行。掺杂量受电位控制, 浓H_2SO_4中的HSO_4~-嵌入/脱嵌的电化学可逆性很好, 最大掺杂量可相当于每5个苯环单元氧化出一个正电荷, 可望将电化学聚对苯用作稳定的二次电池电极材料。  相似文献   

14.
Poly(3,4-ethylenedioxythiophene) (PEDOT) was electropolymerised on aluminium substrates. The Al/Al oxide/PEDOT junction was studied by electrochemical impedance spectroscopy, comparing the impedance response of the polymer film in oxidised, neutral and reduced form. The p- and n-doping behaviour of the PEDOT films was studied by in situ external reflection Fourier transform infrared spectroscopy during stepwise potential cycling of the films. The Al surface underneath the polymer was analysed with X-ray photoelectron spectroscopy. The impedance spectra indicate that an insulating layer between the metal and the polymer grows thicker during doping of the polymer film. The other techniques used suggest that this interfacial layer consists mainly of Al oxides and fluorides. Neither the conductivity nor the dopability of the polymer is notably affected by the growing of this insulating interfacial layer, which makes the concept of PEDOT electropolymerised on Al promising from an organic electronics applications point of view.  相似文献   

15.
Conducting polymers are an interesting class of materials that can be tuned to have a range of properties through counterion doping. For most conducting polymers, the insertion of anions (the doping process) leads to the formation of carbocations (positive charge carriers) along the conjugated polymer backbone. In this research, we report on a scenario that arises where certain (commonly used) anions in water induce oxygenation of the conducting polymers heteroatom. This is in contrast to the widely reported doping process, and the recently reported hydrolysis of conducting polymers. We observe that the transition between these different conducting polymer-interactions/reactions is well described by the concept of structure-making and structure-breaking anions. Poly(3,4-propylenedioxy thiophene dimethyl) (PProDOT-Me2), polypyrrole (PPy), and poly(3,4-ethylenedioxy thiophene) (PEDOT) thin films are exposed to a range of anions in water. Both PProDOT-Me2 and PPy are susceptible to oxygenation, while in contrast PEDOT is doped, when exposed to structure-breaking anions. All the polymers show hydrolysis for structure-making anions. The knowledge of the interaction and/or reaction of conducting polymers with anions in water is not only critical to their application in devices for aqueous environments (i.e., sensing), but also for their processing and fabrication using water.  相似文献   

16.
UV-vis bidimensional spectroelectrochemistry has been applied to the study of the electrochemical stability of conducting polymer films during p- and n-doping processes. Specifically, poly(4,4′-bis(butylthio)-2,2′-bithiophene) has been chosen as example to prove the usefulness and suitability of this multi-response technique to characterize polymer stability during p- and n-doping. It was found that oxidative doping and corresponding de-doping alone did not result in noticeable polymer film degradation. However, in experiments involving both p- and n-doping of this conducting polymer, soluble species arising from the polymer film were detected in solution for the first time, indicating a lower electrochemical stability of the film under these experimental conditions. Moreover, bidimensional spectroelectrochemistry has enabled us not only to detect the soluble degradation products, but also the potential range in which the degradation takes place.  相似文献   

17.
A flow cell with a radial distribution of four all-solid-state ion selective electrodes (ISEs), or alternatively three ISEs and one reference electrode, was designed and optimized for mass production. The radial distribution of the electrodes reduces the cell volume and is expected to minimize cross-contamination between different electrodes. Two different cell prototypes were developed and tested for all-solid-state K+-ISEs based on a solvent polymeric ion-selective membrane (ISM) and a conducting polymer, poly(3,4-ethylenedioxythiophene), as solid internal contact. In the first prototype, PEDOT was electropolymerized from an aqueous solution of the monomer and the doping ion salt, sodium polystyrenesulfonate (NaPSS). The second prototype employed an aqueous dispersion of PEDOT(PSS) that is commercially available (Baytron P, Bayer AG). Compared to electrochemical synthesis, solution casting of the polymer dispersion was found to be a more advantageous method to deposit the conducting polymer layer aiming at mass production. The resulting prototypes of the flow cell had a small volume (ca. 17-37 μl), which makes them suitable for application in clinical analysis.  相似文献   

18.
This paper describes potentiometric measurements in an integrated galvanic cell with both indicator and reference electrodes. Both electrodes are conducting polymer-based. The copper-sensitive indicator electrode is made by using poly(3,4-ethylenedioxythiophene) (PEDOT) doped with 2-(o-arsenophenylazo)-1,8-dihydroxynaphthalene-3,6-disulphonic sodium salt (Arsenazo-I) as the electroactive substance in the film, while the reference electrode is based on PEDOT doped by 2-morpholineoethanesulfonic acid (MES). It is shown that the galvanic cell can be used for determination of copper both in non-aqueous media (where all PVC-based membranes failed) and in the presence of chloride ions, which disturb the signal of conventional copper ion-selective electrodes with solid-state membranes. It is further shown that the titration of copper ions can be successfully monitored using the described electrochemical cell.  相似文献   

19.
Flexible and self-standing multilayered films made of nanoperforated poly(lactic acid) (PLA) layers separated by anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) conducting layers have been prepared and used as electrodes for supercapacitors. The influence of the external layer has been evaluated by comparing the charge storage capacity of four- and five-layered films in which the external layer is made of PEDOT (PLA/PEDOT/PLA/PEDOT) and nanoperforated PLA (PLA/PEDOT/PLA/PEDOT/PLA), respectively. In spite of the amount of conducting polymer is the same for both four- and five-layered films, they exhibit significant differences. The electrochemical response in terms of electroactivity, areal specific capacitance, stability, and coulombic efficiency was greater for the four-layered electrodes than for the five-layered ones. Furthermore, the response in terms of leakage current and self-discharge was significantly better for the former electrodes than for the latter ones.  相似文献   

20.
We report on the spectroelectrochemical characterization of conducting polymer (CP) films, composed of alternating layers of poly(aniline) (PANI) and poly(acrylic acid) (PAA), deposited on ITO-coated, planar glass substrates using layer-by-layer self-assembly. Absorbance changes associated with voltammetrically induced redox changes in ultrathin films composed of only two bilayers (ITO/PANI/PAA/PANI/PAA) were monitored in real time using a unique multiple reflection, broadband attenuated total reflection (ATR) spectrometer. CP films in contact with pH 7 buffer undergo a single oxidation/reduction process, with ca. 12.5% of the aniline centers in the film being oxidized and reduced. The ATR spectra indicate that during an anodic sweep, the leucoemeraldine form of PANI in these films is oxidized to generate both the emeraldine and pernigraniline forms simultaneously. A comparison of the behavior observed during anodic and cathodic sweeps suggests that the rate of oxidation is limited by structural changes in the polymer film originating in electrostatic repulsion between positively charged PANI chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号