首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A simple, sensitive gold nanoparticle (GNP)-based dot-blot immunoassay has been developed for detecting Alzheimer's disease related β-amyloid peptide 1-42 (Aβ(1-42)) down to a 50 pg mL(-1) level in aqueous solution. Practical samples (cerebrospinal fluid (CSF), cell culturing mediums and cell lysates) have been used to demonstrate the ability of the assay.  相似文献   

3.
Well-ordered self-assembled monolayers (SAMs) were prepared on gold from helical peptides carrying a ferrocene (Fc) moiety at the N- or C-terminal end, and long-range electron transfer (ET) from Fc to gold was investigated. Electrochemical studies revealed that an inelastic hopping mechanism dominated over the superexchange mechanism in the ET reactions in the present SAMs and the dipole moment of the helix accelerated the ET reactions probably due to the lowering of the barrier height between the gold surface and peptide layer.  相似文献   

4.
Chen K  Han H  Luo Z 《The Analyst》2012,137(5):1259-1264
An immunoassay based on surface enhanced Raman scattering (SERS) spectroscopy was developed to detect muramidase released protein (MRP) antibody against Streptococcus suis II (SS2) utilizing thorny gold nanoparticles (tAuNPs) as SERS substrates. Initially, tAuNPs with multi-branches were prepared by the seed-mediated growth method in the absence of templates and surfactants, facilitating p-mercaptobenzoic acid (pMBA) conjugation covalently onto the tAuNPs through S-Au bonds. The obtained immuno-SERS tag affording strong Raman signals made it possible to establish an application of indirect detection of the MRP antibody against SS2 with a sandwich assay at a highly sensitive level. The Raman intensity at 1588 cm(-1) was proportional to the logarithm of the concentration of MRP antibody in the range of 10 pg mL(-1) to 0.1 μg mL(-1). The detection sensitivity was significantly improved to 0.1 pg mL(-1) by using the immuno-SERS tags. Furthermore, the proposed SERS approach was applied to detect MRP antibody in pig serum samples, and the results agreed well with those of ELISA, indicating great potential for clinical application in diagnostic immunoassays.  相似文献   

5.
We describe a sensitive method for the immunochromatographic determination of aflatoxin B1. It is based on the following steps: 1) Competitive interaction between non-labeled specific primary antibodies and target antigens in a sample and in the test zone of a membrane; 2) detection of the immune complexes on the membrane by using a secondary antibodies labeled with gold nanoparticles. The method enables precise adjustment of the required quantities of specific antibodies and the colloidal (gold) marker. It was applied in a lateral flow format to the detection of aflatoxin B1 and exhibits a limit of detection (LOD) of 160 pg?·?mL?1 if detected visually, and of 30 pg?·?mL?1 via instrumental detection. This is significantly lower than the LOD of 2 ng?·?mL?1 achieved by conventional lateral flow analysis using the same reagents. Figure
Immunochromatography with secondary labeled antibodies caused 10-fold decrease of detection limit  相似文献   

6.
Tang J  Tang D  Li Q  Su B  Qiu B  Chen G 《Analytica chimica acta》2011,697(1-2):16-22
A new dual-amplification strategy of electrochemical signal based on the catalytic recycling of the product was developed for the antigen-antibody interaction by glucose oxidase (GOD)- conjugated gold-silver hollow microspheres (AuAgHSs) coupled with an artificial catalase, Prussian blue nanoparticles (PB), on a graphene-based immunosensing platform. The first signal amplification introduced in this study was based on the labeled GOD on the AuAgHSs toward the catalytic oxidation of glucose. The generated H(2)O(2) was catalytically reduced by the immobilized PB on the graphene nanosheets with the second amplification. With a sandwich-type immunoassay format, carcinoembryonic antigen (CEA) was monitored as a model analyte by using the synthesized AuAgHSs as labels in pH 6.0 phosphate buffer containing 10mM glucose. Under optimal conditions, the electrochemical immunosensor exhibited a wide dynamic range of 0.005-50 ng mL(-1) with a low detection limit (LOD) of 1.0 pg mL(-1) CEA (at 3σ). Both the intra- and inter-assay coefficients of variation (CVs) were lower than 10%. The specificity and stability of the immunosensor were acceptable. In addition, the assay was evaluated for clinical serum specimens, and received a good correlation with those obtained by the referenced electrochemiluminescent (ECL).  相似文献   

7.

We describe a sensitive method for the immunochromatographic determination of aflatoxin B1. It is based on the following steps: 1) Competitive interaction between non-labeled specific primary antibodies and target antigens in a sample and in the test zone of a membrane; 2) detection of the immune complexes on the membrane by using a secondary antibodies labeled with gold nanoparticles. The method enables precise adjustment of the required quantities of specific antibodies and the colloidal (gold) marker. It was applied in a lateral flow format to the detection of aflatoxin B1 and exhibits a limit of detection (LOD) of 160 pg · mL−1 if detected visually, and of 30 pg · mL−1 via instrumental detection. This is significantly lower than the LOD of 2 ng · mL−1 achieved by conventional lateral flow analysis using the same reagents.

Immunochromatography with secondary labeled antibodies caused 10-fold decrease of detection limit

  相似文献   

8.
This paper describes the performance of junctions based on self-assembled monolayers (SAMs) as the functional element of a half-wave rectifier (a simple circuit that converts, or rectifies, an alternating current (AC) signal to a direct current (DC) signal). Junctions with SAMs of 11-(ferrocenyl)-1-undecanethiol or 11-(biferrocenyl)-1-undecanethiol on ultraflat, template-stripped Ag (Ag(TS)) bottom electrodes, and contacted by top electrodes of eutectic indium-gallium (EGaIn), rectified AC signals, while similar junctions based on SAMs of 1-undecanethiol-SAMs lacking the ferrocenyl terminal group-did not. SAMs in these AC circuits (operating at 50 Hz) remain stable over a larger window of applied bias than in DC circuits. AC measurements, therefore, can investigate charge transport in SAM-based junctions at magnitudes of bias inaccessible to DC measurements. For junctions with SAMs of alkanethiols, combining the results from AC and DC measurements identifies two regimes of bias with different mechanisms of charge transport: (i) low bias (|V| < 1.3 V), at which direct tunneling dominates, and (ii) high bias (|V| > 1.3 V), at which Fowler-Nordheim (FN) tunneling dominates. For junctions with SAMs terminated by Fc moieties, the transition to FN tunneling occurs at |V| ≈ 2.0 V. Furthermore, at sufficient forward bias (V > 0.5 V), hopping makes a significant contribution to charge transport and occurs in series with direct tunneling (V ? 2.0 V) until FN tunneling activates (V ? 2.0 V). Thus, for Fc-terminated SAMs at forward bias, three regimes are apparent: (i) direct tunneling (V = 0-0.5 V), (ii) hopping plus direct tunneling (V ≈ 0.5-2.0 V), and (iii) FN tunneling (V ? 2.0 V). Since hopping does not occur at reverse bias, only two regimes are present over the measured range of reverse bias. This difference in the mechanisms of charge transport at forward and reverse bias for junctions with Fc moieties resulted in large rectification ratios (R > 100) and enabled half-wave rectification.  相似文献   

9.
Zhang D  Li W  Zhang J  Tang W  Qian C  Feng M  Chu Q  Ye J 《Analytica chimica acta》2011,697(1-2):61-66
In this report, we present a novel approach to detect clenbuterol based on competitive surface-enhanced Raman scattering (SERS) immunoassay. Herein, a SERS nanoprobe that relies on gold nanoparticle (GNP) is labeled by 4,4'-dipyridyl (DP) and clenbuterol antibody, respectively. The detection of clenbuterol is carried out by competitive binding between free clenbuterol and clenbuterol-BSA fastened on the substrate with their antibody labeled on SERS nanoprobes. The present method allows us to detect clenbuterol over a much wider concentration range (0.1-100 pg mL(-1)) with a lower limit of detection (ca. 0.1 pg mL(-1)) than the conventional methods. Furthermore, by the use of this new competitive SERS immunoassay, the clenbuterol-BSA (antigen) is chosen to fasten on the substrate instead of the clenbuterol antibody, which could reduce the cost of the assay. Results demonstrate that the proposed method has the wide potential applications in food safety and agonist control.  相似文献   

10.
Wu H  Huo Q  Varnum S  Wang J  Liu G  Nie Z  Liu J  Lin Y 《The Analyst》2008,133(11):1550-1555
We report a dye-encapsulated silica nanoparticle as a label, with the advantages of high fluorescence intensity, photostability, and biocompatibility, in conjunction with microarray technology for sensitive immunoassay of a biomarker, interleukin-6 (IL-6), on a microarray format. The tris(2,2'-bipyridyl)ruthenium(ii) chloride hexahydrate (Rubpy) dye was incorporated into silica nanoparticles using a simple one-step microemulsion synthesis. In this synthesis process, Igepal CA520 was used as the surfactant, therefore, no requirement of cosolvent during the synthesis and the particle size was reduced comparing to the commonly used Triton surfactant system. The nanoparticles are uniform in size with a diameter of 50 nm. The microarray fluorescent immunoassay approach based on dye-doped silica nanoparticle labels has high sensitivity for practical applications with a limit of detection for IL-6 down to 0.1 ng mL(-1). The calibration curve is linear over the range from 0.1 ng mL(-1) to 10 ng mL(-1). Furthermore, results illustrated that the assay is highly specific for IL-6 in the presence of range of cytokines or proteins. The RuDS dye-labeled nanoparticles in connection with protein microarrays show the promise for clinical diagnosis of biomarkers.  相似文献   

11.
A rapid and sensitive LC/MS/MS assay was developed and validated for the determination of clopidogrel in human plasma. Clopidogrel was extracted by single liquid-liquid extraction with pentane, and chromatographic separations were achieved on a C(18) column. The method was validated to demonstrate the specificity, linearity, recovery, lower limit of quantification (LLOQ), stability, accuracy and precision. The multiple reaction monitoring was based on m/z transition of 322.2 --> 211.9 for clopidogrel and 264.1 --> 125.1 for ticlopidine (internal standard). The total analytical run time was relatively short (3 min), and the LLOQ was 10 pg/mL using 0.5 mL of human plasma. The assay was linear over a concentration range from 10 to 10,000 pg/mL (r > 0.999). The intra- and inter-day accuracies were 101.3-108.8 and 98.4-103.5%, respectively, and the intra- and inter-day assay precisions were 1.9-5.5 and 4.4-8.1%, respectively. The developed assay method was applied to a pharmacokinetic study in human volunteers after oral administration of clopidogrel at a dose of 150 mg.  相似文献   

12.
13.
Electron transfer (ET) rate kinetics through n-alkanethiol self-assembled monolayers (SAMs) of alkanethiols of different chain lengths [Me(CH2)nSH; n=8, 10, 11, 15] on Au and Hg surfaces and ferrocene (Fc)-terminated SAMs (poly-norbornylogous and HS(CH2)12CONHCH2Fc) on Au were studied using cyclic voltammetry and scanning electrochemical microscopy (SECM). The SECM results allow determination of the ET kinetics of solution-phase Ru(NH3)63+/2+ through the alkanethiol SAMs on Au and Hg. A model using the potential dependence of the measured rate constants is proposed to compensate for the pinhole contribution. Extrapolated values of koML for Ru(NH3)63+/2+ using the model follow the expected exponential decay (beta is 0.9) for different chain lengths. For a Fc-terminated poly-norbornyl SAM, the standard rate constant of direct tunneling (ko is 189+/-31 s(-1)) is in the same order as the ko value of HS(CH2)12CONHCH2Fc. In blocking and Fc SAMs, the rates of ET are demonstrated to follow Butler-Volmer kinetics with transfer coefficients alpha of 0.5. Lower values of alpha are treated as a result of the pinhole contribution. The normalized rates of ET are 3 orders of magnitude higher for Fc-terminated than for blocking monolayers. Scanning electron microscopy imaging of Pd nanoparticles electrochemically deposited in pinholes of blocking SAMs was used to confirm the presence of pinholes.  相似文献   

14.
Sharma P  Bhalla V  Tuteja S  Kukkar M  Suri CR 《The Analyst》2012,137(10):2495-2502
A solid phase extraction micro-cartridge containing a non-polar polystyrene absorbent matrix was coupled with an electrochemical immunoassay analyzer (EIA) and used for the ultra-sensitive detection of the phenyl urea herbicide diuron in real samples. The EIA was fabricated by using carboxylated carbon nanotubes (CNTs) functionalized with a hapten molecule (an amine functionalized diuron derivative). Screen printed electrodes (SPE) were modified with these haptenized CNTs and specific in-house generated anti diuron antibodies were used for bio-interface development. The immunodetection was realized in a competitive electrochemical immunoassay format using alkaline phosphatase labeled secondary anti-IgG antibody. The addition of 1-naphthyl phosphate substrate resulted in the production of an electrochemically active product, 1-naphthol, which was monitored by using differential pulse voltammetry (DPV). The assay exhibited excellent sensitivity and specificity having a dynamic response range of 0.01 pg mL(-1) to 10 μg mL(-1) for diuron with a limit of detection of around 0.1 pg mL(-1) (n = 3) in standard water samples. The micro-cartridge coupled hapten-CNTs modified SPE provided an effective and efficient electrochemical immunoassay for the real-time monitoring of pesticides samples with a very high degree of sensitivity.  相似文献   

15.
Brain natriuretic peptide (BNP) has been a disease marker in the diagnosis of heart failure. In this study, gold nanoparticles modified with Hemin (H-AuNPs) as nanozymes were used to oxidize ABST and MB to amplified colorimetric and electrochemical redox signals respectively. BNP was combined with H-AuNPs (BNP-H-AuNPs) through electrostatic adsorption to construct competitive nanozyme probes. Target BNP in the sample compete with BNP-H-AuNPs to bind the antibody-modified magnetic nanoparticles (AntiBNP-MNPs). Due to the excellent catalytic performance of the nanozyme, BNP can be observed well by colorimetric and electrochemical assays. Electrochemical method ensured more accurate detection of BNP with a wide detection range (1–200 pg/mL) and a low detection of limit (0.03 pg/mL). Meanwhile, the results of the experiment can be easily observed with the naked eye by simple colorimetric method with a range from 5 ng/mL to 25 ng/mL and a limit of detection down to 80.3 pg/mL. Thus, based on the important role of H-AuNPs, this assay has exhibited potential value of detection the other small proteins through this competitive nanozyme method.  相似文献   

16.
Novel solution-phase immunoassays for molecular analysis of tumor markers   总被引:1,自引:0,他引:1  
Xu XH  Jeffers RB  Gao J  Logan B 《The Analyst》2001,126(8):1285-1292
at 3 x 10(9) M(-1) and a step-wise binding process with PSA-free MAB. Thus, this solution-phase quantitative ECL immunoassay allowed measurement of the affinity of serum PSAs with their MABs and screening of PSAs based upon their affinity to MABs. Unlike other immunoassays, this immunoassay demonstrated one-step rapid analysis while simultaneously eliminating immobilization, separation and washing steps and detected PSA at a level of 1.7 pg mL(-1), which is 1000-fold more sensitive than current PSA immunoassays. Furthermore, single-molecule (SM) phosphorescence microscopy was developed to detect single serum PSA-free and PSA-complex molecules in solution with no use of antibody showing that PSA-free molecules diffused faster than PSA-complex molecules in solution. This finding is consistent with ECL measurements and implies the possibility of screening individual analytes in a complex mixture using their distinct SM diffusion distance. This is the first report describing the detection of single protein molecules labeled with a metal-complex using phosphorescence microscopy and also the screening of serum tumor markers using ECL and SM phosphorescence solution-phase assays.  相似文献   

17.
We present a novel immunoassay format utilizing the catalytic properties of gold nanoparticles in the luminol-silver nitrate-gold nanoparticle based chemiluminescence (CL) system for the detection of widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Highly sensitive anti-2,4-D antibody was produced and conjugated with gold nanoparticles of various sizes. In the present assay format, employing a competitive inhibition approach, a well-characterized hapten-protein conjugate (2,4-D-BSA) was used to coat the microtiter plates. The analyte (2,4-D) was pre-incubated with anti-2,4-D antibody labeled with gold nanoparticles and added to each well of the microtiter plate. The gold label triggered the reaction between luminol and silver nitrate generating a luminescence signal at 425 nm. Under the optimized conditions, the CL based immunoassay showed the detection limit of 2,4-D in standard water samples around 3 ng mL(-1). The CL based immunoassay format, based on gold nanoparticles as a catalyst, could be used as a fast screening methodology (<30 min) for pesticide detection.  相似文献   

18.
Liu Q  Han M  Bao J  Jiang X  Dai Z 《The Analyst》2011,136(24):5197-5203
A sensitive and specific immunoassay method for detecting α-fetoprotein (AFP) based on electrogenerated chemiluminescence (ECL) was described. ECL could perform detection for a series of different concentrations of AFP. CdSe quantum dots (QDs) were used as labels and were linked to AFP antibody (anti-AFP, the secondary antibody, Ab2*). Immunoassay was carried out on a modified electrode using a sandwich assay approach, where anti-AFP (Ab1) was covalently bound to the surface of an Au electrode to be allowed to capture AFP specifically. Afterwards, Ab2* was allowed to bind selectively to the captured AFP. The non-specific adsorption was negligible. In the presence of H(2)O(2), the ECL intensity increased with the increase of AFP, which indicated that an immunosensor for AFP was constructed. The detection of AFP based on measuring the ECL intensity of CdSe without the enzyme and mediator can promote the stability of the immunosensor. The linear range of the AFP assay was from 0.002 to 32 ng mL(-1). Furthermore, the immunosensor showed high sensitivity, good precision, stability, and reproducibility and could be used for the detection of real samples with consistent results in comparison with those obtained by the enzyme-linked immunosorbent assay (ELISA) method. The strategy was successfully demonstrated as a simple, cost-effective, specific, and potential method to detect AFP in practical samples.  相似文献   

19.
Cui X  Liu M  Li B 《The Analyst》2012,137(14):3293-3299
Homogeneous immunoassays are becoming more and more attractive for modern medical diagnosis because they are superior to heterogeneous immunoassays in sample and reagent consumption, analysis time, portability and disposability. Herein, a universal platform for homogeneous immunoassay, using human immunoglobulin (IgG) as a model analyte, has been developed. This assay relies upon the inner filter effect (IFE) of gold nanoparticles (AuNPs) on CdTe QDs fluorescence. The immunoreaction of antigen and antibody can induce the aggregation of antibody-functionalized AuNPs, and after aggregation the IFE of AuNPs on CdTe QDs fluorescence is greatly enhanced, resulting in a decrease of fluorescence intensity in the system. Based on this phenomenon, a wide dynamic range of 1-100 pg mL(-1) for determination of IgG can be obtained. The proposed method shows a detection limit of 0.3 pg mL(-1) for human IgG, which is much lower than the corresponding absorbance-based approach and compares favorably with other reported fluorescent methods. This immunoassay method is simple, rapid, cheap, and sensitive. The proposed method has been successfully applied to measuring IgG in serum samples, and the obtained results agreed well with those of the enzyme-linked immunosorbent assay (ELISA).  相似文献   

20.
Here we present a highly sensitive, rapid and simple electrochemical assay of RNase based on coupling magnetic separation of the enzymatically treated RNA with stripping potentiometric detection of the purine nucleobases. A detection limit of 1×10?8 U RNase (ca. 4 pg/mL) is obtained in connection to a 60 min enzymatic digestion. The attractive performance of this direct indicator‐free electrochemical assay offers great promise for a wide range of molecular biology and water quality applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号