首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preface     
《Chemical physics》2005,308(3):199-200
The anisotropic rototranslational scattering spectra of nitrogen gas at high frequency up to 700 cm−1 for several temperatures and from low densities are analyzed in terms of new site–site (M3SV) intermolecular potential and interaction-induced pair polarizability models, using quantum spectral shapes computations. Our theoretical calculations take into account multipole contributions from the mean value and anisotropy of the dipole–dipole polarizability tensor α, two independent components of the dipole–octopole polarizability tensor E and dipole–dipole–quadrupole hyperpolarizability tensor B. The high-frequency wings are discussed in terms of the collision-induced rotational Rayleigh effect and estimates for the dipole–octopole polarizability |E4| are obtained and checked with recent ab initio theoretical value. Good comparison is found in the frequency range 0–400 cm−1 between the theoretical and experimental spectra. When an exponential contribution [exp(−ν/ν0)] with ν0 = 425 cm−1 is considered to model very short-range light scattering mechanisms at room temperature, good agreement is found over the whole frequency range.  相似文献   

2.
Classical molecular dynamics simulations have been carried out for gaseous CO(2) starting from various anisotropic intermolecular potential energy surfaces. Through calculations for a large number of molecules treated as rigid rotors, the time evolution of the interaction-induced electric dipole vector is obtained and the Laplace transform of its autocorrelation function gives the collision-induced absorption rototranslational spectrum. The results are successfully compared with those of previous similar calculations before studies of the influences of the intermolecular potential and induced-dipole components are made. The calculated spectra show a significant sensitivity to anisotropic forces consistently with previous analyses limited to the spectral moments. The present results also demonstrate the importance of vibrational and back-induction contributions to the induced dipole. Comparisons between measured far infrared (0-250 cm(-1)) spectra at different temperatures and results calculated without the use of any adjustable parameter are made. When the best and more complete input data are used, the quality of our predictions is similar to that obtained by Gruszka et al. [Mol. Phys. 93, 1007 (1998)] after the introduction of ad hoc short-range overlap contributions. Our results thus largely obviate the need for such contributions the magnitudes of which remain questioned. Nevertheless, problems remain since, whereas good agreements with measurements are obtained above 50 cm(-1), the calculations significantly underestimate the absorption below, a problem which is discussed in terms of various possible error sources.  相似文献   

3.
Low-frequency infrared (IR) and depolarized Raman scattering (DRS) spectra of acetonitrile, methylene chloride, and acetone liquids are simulated via molecular dynamics calculations with the charge response kernel (CRK) model obtained at the second order M?ller-Plesset perturbation (MP2) level. For this purpose, the analytical second derivative technique for the MP2 energy is employed to evaluate the CRK matrices. The calculated IR spectra reasonably agree with the experiments. In particular, the agreement is excellent for acetone because the present CRK model well reproduces the experimental polarizability in the gas phase. The importance of interaction induced dipole moments in characterizing the spectral shapes is stressed. The DRS spectrum of acetone is mainly discussed because the experimental spectrum is available only for this molecule. The calculated spectrum is close to the experiment. The comparison of the present results with those by the multiple random telegraph model is also made. By decomposing the polarizability anisotropy time correlation function to the contributions from the permanent, induced polarizability and their cross term, a discrepancy from the previous calculations is observed in the sign of permanent-induce cross term contribution. The origin of this discrepancy is discussed by analyzing the correlation functions for acetonitrile.  相似文献   

4.
The relaxation of the many-body polarizability in liquid acetonitrile and chloroform at room temperature was studied by molecular-dynamics simulations. The collective polarizability induced by intermolecular interactions was included using first- and all-orders dipole-induced-dipole models and calculated considering both molecule-centered and distributed site polarizabilities. The anisotropic response was analyzed using a separation scheme that allows a decomposition of the total response in terms of orientational and collision-induced effects. We found the method effective in approximately separating the contributions of these relaxation mechanisms, although the orientational-collision-induced interference makes a non-negligible contribution to the total response. In both liquids the main contribution to the anisotropic response is due to orientational dynamics, but intermolecular collision-induced (or translational) effects are important, especially at short times. We found that higher-order interaction-induced effects were essentially negligible for both liquids. Larger differences were found between the center-center and site-site models, with the latter showing faster polarizability relaxation and better agreement with experiment. Isotropic and anisotropic spectra were computed from the corresponding time correlation functions. The lowest-frequency contributions are largely suppressed in the isotropic spectra and their overall shape is similar to the purely collision-induced contribution to the anisotropic spectra, but with an amplitude which is smaller by a factor of approximately 5 in acetonitrile and approximately 3 in chloroform.  相似文献   

5.
《Chemical physics letters》1986,127(3):197-199
We have calculated the (H2)2 dimer spectra superposed on the binary, depolarized, collision-induced Raman spectra of gaseous hydrogen. The dimer contributions are due to bound-free transitions and appear at low frequencies. They differ for para and equilibrium hydrogen. The calculations are based on the McConville potential and the DID model of the induced anisotropy of the polarizability which was seen previously to model the induced spectra fairly well. We conclude that while the results are qualitatively similar, they do not explain quantitatively the interesting differences between the induced spectra of equilibrium and parahydrogen observed by le Duff and Ouillon at low temperature (123 K).  相似文献   

6.
We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.  相似文献   

7.
A new induced dipole polarization model based on interacting Gaussian charge densities is presented. In contrast to the original induced point dipole model, the Gaussian polarization model is capable of finite interactions at short distances. Aspects of convergence related to the Gaussian model will be explored. The Gaussian polarization model is compared with the damped Thole-induced dipole model and the point dipole model. It will be shown that the Gaussian polarization model performs slightly better than the Thole model in terms of fitting to molecular polarizability tensors. An advantage of the model based on Gaussian charge distribution is that it can be easily generalized to other multipole moments and provide effective damping for both permanent electrostatic and polarization models. Finally, a method of parameterizing polarizabilities is presented. This method is based on probing a molecule with point charges and fitting polarizabilities to electrostatic potential. In contrast to the generic atom type polarizabilities fit to molecular polarizability tensors, probed polarizabilities are significantly more accurate in terms of reproducing molecular polarizability tensors and electrostatic potential, while retaining conformational transferability.  相似文献   

8.
Existing measurements of the collision-induced rototranslational absorption spectra of gaseous mixtures of methane with helium, hydrogen, or nitrogen are compared to theoretical calculations, based on refined multipole-induced and dispersion force-induced dipole moments of the interacting molecular pairs CH4-He, CH4-H2, and CH4-N2. In each case the measured absorption exceeds the calculations substantially at most frequencies. We present the excess absorption spectra, that is the difference of the measured and the calculated profiles, of these supramolecular CH4-X systems at various gas temperatures. The excess absorption spectra of CH4-X pairs differ significantly for each choice of the collision partner X, but show common features (spectral intensities and shape) at frequencies from roughly 200 to 500 cm(-1). These excess spectra seem to defy modeling in terms of ad hoc exchange force-induced dipole components attempted earlier. We suggest that besides the dipole components induced by polarization in the electric molecular multipole fields and their gradients, and by exchange and dispersion forces, other dipole induction mechanisms exist in CH4-X complexes that presumably are related to collisional distortion of the CH4 molecular frame.  相似文献   

9.
We present ab initio calculations of the interaction-induced dipole moment of the Ar-H2 van der Waals dimer. The primary focus of our calculations is on the H2 bond length dependence of the dipole moment, which determines the intensities of both the collision-induced H2 upsilon = 1 <-- 0 fundamental band in gaseous Ar-H2 mixtures and the dopant-induced H2 upsilon = 1 <-- 0 absorption feature in Ar-doped solid H2 matrices. Our calculations employ large atom-centered basis sets, diffuse bond functions positioned between the two monomers, and a coupled cluster treatment of valence electron correlation; core-valence correlation effects appear to make negligible contributions to the interaction-induced dipole moment for the Ar-H2 configurations considered here.  相似文献   

10.
The multiple-scattering series for depolarized light scattering from simple liquids is investigated. It is found that the leading term in the series, due to double—double scattering, is probably not large compared to double—triple (DT) scattering contributions. Existing theories, which neglect DT scattering, have concluded that the experimental data cannot be explained using the dipole—induced dipole (DID) model for the pair polarizability. It is suggested that a theory which includes DT scattering will not lead to rejection of the DID model.  相似文献   

11.
The effects of ion force field polarizability on the interfacial electrostatic properties of approximately 1 M aqueous solutions of NaCl, CsCl, and NaI are investigated using molecular dynamics simulations employing both nonpolarizable and Drude-polarizable ion sets. Differences in computed depth-dependent orientational distributions, "permanent" and induced dipole and quadrupole moment profiles, and interfacial potentials are obtained for both ion sets to further elucidate how ion polarizability affects interfacial electrostatic properties among the various salts relative to pure water. We observe that the orientations and induced dipoles of water molecules are more strongly perturbed in the presence of polarizable ions via a stronger ionic double layer effect arising from greater charge separation. Both anions and cations exhibit enhanced induced dipole moments and strong z alignment in the vicinity of the Gibbs dividing surface (GDS) with the magnitude of the anion induced dipoles being nearly an order of magnitude larger than those of the cations and directed into the vapor phase. Depth-dependent profiles for the trace and z z components of the water molecular quadrupole moment tensors reveal 40% larger quadrupole moments in the bulk phase relative to the vapor which mimics a similar observed 40% increase in the average water dipole moment. Across the GDS, the water molecular quadrupole moments increase nonmonotonically (in contrast to the water dipoles) and exhibit a locally reduced contribution just below the surface due to both orientational and polarization effects. Computed interfacial potentials for the nonpolarizable salts yield values 20-60 mV more positive than pure water and increase by an additional 30-100 mV when ion polarizability is included. A rigorous decomposition of the total interfacial potential into ion monopole, water and ion dipole, and water quadrupole components reveals that a very strong, positive ion monopole contribution is offset by negative contributions from all other potential sources. Water quadrupole components modulated by the water density contribute significantly to the observed interfacial potential increments and almost entirely explain observed differences in the interfacial potentials for the two chloride salts. By lumping all remaining nonquadrupole interfacial potential contributions into a single "effective" dipole potential, we observe that the ratio of quadrupole to "effective" dipole contributions range from 2:1 in CsCl to 1:1.5 in NaI, suggesting that both contributions are comparably important in determining the interfacial potential increments. We also find that oscillations in the quadrupole potential in the double layer region are opposite in sign and partially cancel those of the "effective" dipole potential.  相似文献   

12.
The frequency-dependent dipole polarizability of Hg(2) is calculated using response theory within four-component relativistic density-functional theory [using the local-density approximation (LDA) and the hybrid functional B3LYP] including corrections for the basis-set superposition error. The anisotropic component of the polarizability tensor agrees well with the values obtained from collision-induced Raman spectroscopy carried out at a wavelength of 488 nm. The values obtained from the two density functionals agree closely with the experimentally derived anisotropy component of the dipole polarizability, despite their rather large differences in the dimer potential-energy curves (LDA is strongly overbinding while B3LYP is purely repulsive). The first two refractivity virial coefficients for the generalized Clausius-Mossotti function are derived.  相似文献   

13.
Electric light scattering and microelectrophoresis were applied to investigate the electric moments (permanent dipole moment and electric polarizability and electrophoretic mobility of envelope-free chloroplasts and photosystem II (PS II particles. The effect of the removal of the extrinsic polypeptides (18, 24 and 33 kDa) on the electric moments was also studied. A significant difference was observed between the orientation behaviour of chloroplasts and PS II preparations. The data indicate that the permanent and induced dipole moments contribute to the orientation of the PS II particles, whereas chloroplasts possess induced dipole moment only.

NaCl and Tris treatments of PS II preparations influence both the transverse permanent dipole moment and the electric polarizability of PS II particles. The increase in the electrophoretic mobility of PS II particles on removal of the extrinsic proteins corresponds to an increase in the electric polarizability value, demonstrating its interfacial nature.  相似文献   


14.
Localized surface plasmons (LSPs) of metallic nanoparticles decay either radiatively or via an electron-hole pair cascade. In this work, the authors have experimentally and theoretically explored the branching ratio of the radiative and nonradiative LSP decay channels for nanodisks of Ag, Au, Pt, and Pd, with diameters D ranging from 38 to 530 nm and height h=20 nm, supported on a fused silica substrate. The branching ratio for the two plasmon decay channels was obtained by measuring the absorption and scattering cross sections as a function of photon energy. The former was obtained from measured extinction and scattering coefficients, using an integrating sphere detector combined with particle density measurements obtained from scanning electron microscopy images of the nanoparticles. Partly angle-resolved measurements of the scattered light allowed the authors to clearly identify contributions from dipolar and higher plasmonic modes to the extinction, scattering, and absorption cross sections. Based on these experiments they find that absorption dominates the total scattering cross section in all the examined cases for small metallic nanodisks (D<100 nm). For D>100 nm absorption still dominates for Pt and Pd nanodisks, while scattering dominates for Au and Ag. A theoretical approach, where the metal disks are approximated as oblate spheroids, is used to account for the trends in the measured cross sections. The field problem is solved in the electrostatic limit. The spheroid is treated as an induced dipole for which the dipolar polarizability is calculated based on spheroid geometry and the (bulk) dielectric response function of the metal the spheroid consists of and the dielectric medium surrounding it. One might expect this model to be inappropriate for disks with D>100 nm since effects due to the retardation of the incoming field across the metallic nanodisk and contributions from higher plasmonic modes are neglected. However, this model describes quite well the energy dependence of the dipolar resonance, the full width at half maximum, and the total extinction cross section for all four metallic systems, even when 100相似文献   

15.
16.
The position and the intensity of electronic bands are influenced by an electric field. Pronounced changes in the position of absorption bands are mainly due to the dipole moment of the molecule in the ground state and the change in the dipole moment during the excitation process, and pronounced changes in intensity are due to the field dependence of the transition moment, which can be described by the transition polarizability. The effect of an external electric field on the optical absorption (electrochromism) of suitable molecules can be used to determine the dipole moment in the ground state, the change in dipole moment during the excitation process, the direction of the transition moment of the electronic band, and certain components of the transition polarizability tensor. These data largely determine the strong solvatochromism (solvent-dependence of the position and intensity of electronic bands), which is observed in particular with molecules having large dipole moments. Smaller contributions to solvatochromism result from dispersion interactions, which predominate in the case of nonpolar molecules. The models developed have been experimentally checked and verified by a combination of electro-optical absorption measurements (influence of an external electric field on absorption) and investigation of the solvent-dependence of the electronic bands.  相似文献   

17.
The near infrared spectrum of the ν1 band (3.3μm) for gaseous CHF3 has been investigated for pressures up to 38 bar at room temperature. Measurements of the integrated intensities as a function of density show an evidence of a pressure-induced effect in infrared absorption. The contributions due to the collision-induced absorption are proportional to the square of the density of the polar molecule for pressures up to 20 bar.  相似文献   

18.
The polarized Raman scattering and infrared spectra of perchlorate solutions in acetone have been investigated in the CO stretching band region. The cation-dependent separation between the isotropic and anisotropic maxima of Raman band is interpreted in terms of intermolecular coupling of the CO vibrators in the solvation shell of cation. The linear correlation between the isotropic-anisotropic separation and integral intensities of the IR band indicates that the induced dipole mechanism of the coupling dominates.  相似文献   

19.
An analytic solution for the translational two-body contribution to the quadrupole-induced dipole correlation function is presented. It allows one to evaluate the far-infrared collision-induced absorption spectra of molecular systems, composed of quasi-spherical molecules at low density from the knowledge of few parameters derived from different experiments. The comparison with a translational correlation function extracted from the absorption spectrum of gaseous N2, under the same approximations, is also discussed.  相似文献   

20.
Electroabsorption spectra were obtained for single-stranded polynucleotides poly(U), poly(C), poly(A), and poly(G) in glycerol/water glass at low temperature, and the differences in permanent dipole moment (Deltamu) and polarizability (Deltaalpha) were estimated for several spectral ranges covering the lowest energy absorption band around 260 nm. In each spectral range, the electrooptical parameters associated with apparent features in the absorption spectrum exhibit distinct values representing either a dominant single transition or the resultant value for a group of a relatively narrow cluster of overlapping transitions. The estimated spacing in energy between electronic origins of these transitions is larger than the electronic coupling within the Coulombic interaction model which is usually adopted in computational studies. The electroabsorption data allow us to distinguish a weak electronic transition associated with a wing in polynucleotide absorption spectra, at an energy below the electronic origin in absorption spectra of monomeric nucleobases. In poly(C) and poly(G), these low-energy transitions are related to increased values of Deltamu and Deltaalpha, possibly indicating a weak involvement of charge resonance in the respective excited states. A model capable of explaining the origin of low-energy excited states, based on the interaction of pipi* and npi* transitions in neighboring bases, is introduced and briefly discussed on the grounds of point dipole interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号