首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present paper is concerned with the study of flow and heat transfer characteristics in the unsteady laminar boundary layer flow of an incompressible viscous fluid over continuously stretching permeable surface in the presence of a non-uniform heat source/sink and thermal radiation. The unsteadiness in the flow and temperature fields is because of the time-dependent stretching velocity and surface temperature. Similarity transformations are used to convert the governing time-dependent nonlinear boundary layer equations for momentum and thermal energy are reduced to a system of nonlinear ordinary differential equations containing Prandtl number, non-uniform heat source/sink parameter, thermal radiation and unsteadiness parameter with appropriate boundary conditions. These equations are solved numerically by applying shooting method using Runge–Kutta–Fehlberg method. Comparison of numerical results is made with the earlier published results under limiting cases. The effects of the unsteadiness parameter, thermal radiation, suction/injection parameter, non-uniform heat source/sink parameter on flow and heat transfer characteristics as well as on the local Nusselt number are shown graphically.  相似文献   

2.
Non-similar solution of a steady mixed convection flow over a horizontal flat plate in the presence of surface mass transfer (suction or injection) is obtained when there is power-law variation in surface temperature. The surface temperature is assumed to vary as a power of the axial coordinate measured from the leading edge of the plate. A non-similar mixed convection parameter is considered which covers the whole convection regime, namely from pure free convection to pure forced convection. Numerical results are reported here to account the effects of Prandtl number, surface temperature, surface mass transfer parameter (suction or injection) on velocity and temperature profiles, and skin friction and heat transfer coefficients.  相似文献   

3.
Hydromagnetic heat transfer by mixed convection along an inclined continuously stretching surface, with power-law variation in the surface temperature or heat flux, in the presence of Hall current and internal heat generation/absorption has been studied. The surface is considered to be permeable to allow fluid suction or blowing, and stretching with a surface velocity varied according to a power-law. Two cases of the temperature boundary conditions were considered at the surface. The governing equations have been transformed into non-similar partial differential equations which have been integrated by the forth-order Runge–Kutta method. The effect of Hall parameter, magnetic parameter, dimensionless blowing/suction parameter, space and temperature dependent internal heat generation/absorption parameters and buoyancy force parameters on the temperature, primary and secondary flow velocity have been studied parametrically. All parameters involved in the problem affect the flow and thermal distributions except the temperature-dependent internal heat generation/absorption in the case of prescribed heat flux (PHF). Numerical values of the local skin-friction and the local Nusselt numbers for various parametric conditions have been tabulated.  相似文献   

4.
The unsteady laminar boundary layer flow over a continuously stretching permeable surface is investigated. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. Effects of the unsteadiness parameter, suction/injection parameter and Prandtl number on the heat transfer characteristics are thoroughly examined.  相似文献   

5.
We consider a convective flow in a porous medium of an incompressible viscous conducting fluid impinging on a permeable stretching surface with suction, and internal heat generation/absorption. Using a similarity transformation the governing equations of the problem are reduced to a coupled third-order nonlinear ordinary differential equations. We first examine a number of special cases for which we may obtain exact solutions. We then obtain analytical solutions (by the Homotopy Analysis Method) and numerical solutions (by a boundary value problem solver), in order to further study the behavior of the nonlinear differential equations, for various values of the physical parameters. Our numerical solutions are shown to agree with the available results in the literature. We then employ the numerical results to bring out the effects of the suction parameter, heat source/sink parameter, stretching parameter, porosity parameter, the Prandtl number and the free convection parameter on the flow and heat transfer characteristics. In the absence of suction and free convection, our findings are in agreement with the corresponding numerical results of Attia [H.A. Attia, On the effectiveness of porosity on stagnation point flow towards a stretching surface with heat generation, Comput. Mater. Sci. 38 (2007) 741-745].  相似文献   

6.
In this paper, heat and mass transfer analysis for boundary layer stagnation-point flow over a stretching sheet in a porous medium saturated by a nanofluid with internal heat generation/absorption and suction/blowing is investigated. The governing partial differential equation and auxiliary conditions are converted to ordinary differential equations with the corresponding auxiliary conditions via Lie group analysis. The boundary layer temperature, concentration and nanoparticle volume fraction profiles are then determined numerically. The influences of various relevant parameters, namely, thermophoresis parameter Nt, Brownian motion parameter Nb, Lewis number Le, suction/injection parameter S, permeability parameter k1, source/sink parameter λ and Prandtl parameter Pr on temperature and concentration as well as wall heat flux and wall mass flux are discussed. Comparison with published results is presented.  相似文献   

7.
根据有旋特征线理论,设计出了沿程马赫数下降规律可控的轴对称基准流场,分析了基准流场的几何参数(前缘压缩角及中心体半径)的影响规律,发现选取较小的前缘压缩角和中心体半径有利于得到性能优良的基准流场;然后在设计状态Ma=6时研究了三种典型的马赫数下降规律对这种轴对称流场性能的影响。最后考虑了粘性的影响,并进行了粘性修正探索,结果表明,采用附面层位移厚度修正方法后,基准流场的壁面压力分布和无粘情况吻合良好。   相似文献   

8.
The problem of peristaltic flow of a Newtonian fluid with heat transfer in a vertical asymmetric channel through porous medium is studied under long-wavelength and low-Reynolds number assumptions. The flow is examined in a wave frame of reference moving with the velocity of the wave. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The analytical solution has been obtained in the form of temperature from which an axial velocity, stream function and pressure gradient have been derived. The effects of permeability parameter, Grashof number, heat source/sink parameter, phase difference, varying channel width and wave amplitudes on the pressure gradient, velocity, pressure drop, the phenomenon of trapping and shear stress are discussed numerically and explained graphically.  相似文献   

9.
An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid over a flat sheet with a linear velocity in the presence of thermal radiation and non-uniform heat source. The thermal conductivity is assumed to vary as a linear function of temperature. The basic equations governing the flow and heat transfer are in the form of partial differential equations, the same have been reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformation. The transformed equations are solved analytically by regular perturbation method. Numerical solution of the problem is also obtained by the efficient shooting method, which agrees well with the analytical solution. The effects of various physical parameters such as viscoelastic parameter, Chandrasekhar number, Prandtl number, variable thermal conductivity parameter, Eckert number, thermal radiation parameter and non-uniform heat source/sink parameters which determine the temperature profiles are shown in several plots and the heat transfer coefficient is tabulated for a range of values of said parameters. Some important findings reported in this work reveals that combined effect of variable thermal conductivity, radiation and non-uniform heat source have significant impact in controlling the rate of heat transfer in the boundary layer region.  相似文献   

10.
研究不可压缩粘性导电流体,流过半无限竖直可渗透平板时,将其偏微分形式的流动和传热的基本控制方程,应用适当的相似变换,简化为非线性的常微分方程组.对两种抽吸参数:大的和小的抽吸参数,采用摄动法得到变换后方程的近似解.数值结果表明,随着磁场参数和抽吸参数的增大,任意点的速度场在减小;磁场参数的影响,引起热边界层厚度的增大;速度和温度场随着热汇参数的增大而减小.  相似文献   

11.
An analysis has been carried out to study the flow and heat transfer characteristics for MHD viscoelastic boundary layer flow over an impermeable stretching sheet with space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink), viscous dissipation, thermal radiation and magnetic field due to frictional heating. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied vertically in the flow region. The governing partial differential equations for the flow and heat transfer are transformed into ordinary differential equations by a suitable similarity transformation. The governing equations with the appropriate conditions are solved exactly. The effects of viscoelastic parameter and magnetic parameter on skin friction and the effects of viscous dissipation, non-uniform heat source/sink and the thermal radiation on heat transfer characteristics for two general cases namely, the prescribed surface temperature (PST) case and the prescribed wall heat flux (PHF) case are presented graphically and discussed. The numerical results for the wall temperature gradient (the Nusselt number) are presented in tables and are discussed.  相似文献   

12.
The unsteady Couette–Poiseuille flow of an electrically conducting incompressible non-Newtonian viscoelastic fluid between two parallel horizontal non-conducting porous plates is studied with heat transfer considering the Hall effect. A sudden uniform and constant pressure gradient, an external uniform magnetic field that is perpendicular to the plates and uniform suction and injection through the surface of the plates are applied. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are taken into consideration. Numerical solutions for the governing momentum and energy equations are obtained using finite difference approximations. The effect of the Hall term, the parameter describing the non-Newtonian behavior, and the velocity of suction and injection on both the velocity and temperature distributions is examined.  相似文献   

13.
研究了运动的粘性导电流体中可渗透收缩壁面上非稳态磁流体边界层流动,利用解析和数值方法对问题进行了研究,并考虑了壁面速度滑移的影响.提出了一个新的解析方法(DTM-BF),并将其应用于求解带有无穷远边界条件的非线性控制方程的近似解析解.对所有的解析结果和数值结果进行了对比,结果显示两者非常吻合,从而证明了DTM-BF方法的有效性.另外,对不同的参数,得到了控制方程双解和单解的存在范围.最后,分别讨论了滑移参数、非稳态参数、磁场参数、抽吸/喷注参数和速度比例参数对壁面摩擦、唯一解速度分布和双解速度分布的影响.  相似文献   

14.
Heat and mass transfer effects in the three-dimensional mixed convection flow of a viscoelastic fluid with internal heat source/sink and chemical reaction have been investigated in the present work. The flow generation is because of an exponentially stretching surface. Magnetic field normal to the direction of flow is considered. Convective conditions at the surface are also encountered. Appropriate similarity transformations are utilized to reduce the boundary layer partial differential equations into the ordinary differential equations. The homotopy analysis method is used to develop the solution expressions. Impacts of different controlling parameters such as ratio parameter, Hartman number, internal heat source/sink, chemical reaction, mixed convection, concentration buoyancy parameter and Biot numbers on the velocity, temperature and concentration profiles are analyzed. The local Nusselt and Sherwood numbers are sketched and examined.  相似文献   

15.
The two dimensional Couette flow of a non-homogeneous viscous fluid is studied. The plane boundaries of the channel are maintained at different temperatures. The upper plane moves with a uniform horizontal velocity and the lower plane is at rest. The fluid is subjected to suction and injection at the boundaries. Thesteady equations are solved by introducing similarity variables which are expanded in series of powers of a small stratification parameter. The non-linear theory predicts that the temperature depends on the distancex from the throat section, an observation which is not predicted by the linear theory. The non-linear effects on velocity and temperature are studied. The rate of heat transfer is discussed.  相似文献   

16.
The effect of variable viscosity on laminar mixed convection flow and heat transfer along a semi-infinite unsteady stretching sheet taking into account the effect of viscous dissipation is studied. The flow of the fluid and subsequent heat transfer from the stretching surface is investigated with the aid of suitable transformation variables. Solutions for the velocity and temperature fields are obtained for some representative values of the unsteadiness parameter, variable viscosity parameter, mixed convection parameter and Eckert number. Typical velocity and temperature profiles, the local skin friction coefficient and the local heat transfer rate are presented at selected controlling parameters.  相似文献   

17.
The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible non-Newtonian Bingham fluid bounded by two parallel non-conducting porous plates is studied with heat transfer considering the Hall effect. An external uniform magnetic field is applied perpendicular to the plates and the fluid motion is subjected to a uniform suction and injection. The lower plate is stationary and the upper plate moves with a constant velocity and the two plates are kept at different but constant temperatures. Numerical solutions are obtained for the governing momentum and energy equations taking the Joule and viscous dissipations into consideration. The effect of the Hall term, the parameter describing the non-Newtonian behavior, and the velocity of suction and injection on both the velocity and temperature distributions are studied.  相似文献   

18.
在固定的底板上有横向正弦射流,而匀速运动的多孔介质顶板以常速率完全抽出的情况下,理论分析了热幅射对三维Couette流动温度分布的影响.在这种射流速度下,流动呈现三维流动.利用图形分析了Prandtl数、幅射参数和射流参数对传热速率的影响.Prandtl数对温度分布的影响比射流参数或幅射参数大得多.  相似文献   

19.
The steady flow of an incompressible viscous non-Newtonian fluid above an infinite rotating porous disk in a porous medium is studied with heat transfer. A uniform injection or suction is applied through the surface of the disk. Numerical solutions of the non-linear differential equations which govern the hydrodynamics and energy transfer are obtained. The effect of the porosity of the medium, the characteristics of the non-Newtonian fluid and the suction or injection velocity on the velocity and temperature distributions is considered. The inclusion of the three effects, the porosity, the non-Newtonian characteristics, and the suction or injection velocity together has shown some interesting effects.  相似文献   

20.
An analysis has been carried out to study the momentum and heat transfer characteristics in an incompressible electrically conducting non-Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly non-linear coupled ordinary differential equations by similarity transformations. The effect of variable fluid viscosity, Magnetic parameter, Prandtl number, variable thermal conductivity, heat source/sink parameter and thermal radiation parameter are analyzed for velocity, temperature fields, and wall temperature gradient. The resultant coupled highly non-linear ordinary differential equations are solved numerically by employing a shooting technique with fourth order Runge–Kutta integration scheme. The fluid viscosity and thermal conductivity, respectively, assumed to vary as an inverse and linear function of temperature. The analysis reveals that the wall temperature profile decreases significantly due to increase in magnetic field parameter. Further, it is noticed that the skin friction of the sheet decreases due to increase in the Magnetic parameter of the flow characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号