首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper studies a periodic review pricing and inventory replenishment problem which encounters stochastic demands in multiple periods. In many inventory control problems, the unsatisfied demand is traditionally assumed to be backlogged but in this paper is assumed to be lost. In many practical problems, a consumer who could not buy what he/she wants in one store is not willing to wait until that store restocks it but tries to buy alternatives in other stores. Also, in this paper, the random variable for the demand function is assumed to be general, which means that any probability function for the random variable can be applied to our result. Cost terms consist of the holding cost by the leftover, the shortage cost by lost sales, and the strictly positive fixed ordering cost. The objective of this paper is to dynamically and simultaneously decide the optimal selling price and replenishment in each period by maximizing the expected profit over the finite selling horizon. We show that, under the general assumption on the random variable for the demand, the objective function is KK-concave, an (s,S)(s,S) policy is optimal for the replenishment and the optimal price is determined based on the inventory level after the replenishment in each period.  相似文献   

2.
This paper considers a single-item, two-echelon, continuous-review inventory model. A number of retailers have their stock replenished from a central warehouse. The warehouse in turn replenishes stock from an external supplier. The demand processes on the retailers are independent Poisson. Demand not met at a retailer is lost. The order quantity from each retailer on the warehouse and from the warehouse on the supplier takes the same fixed value Q, an exogenous variable determined by packaging and handling constraints. Retailer i follows a (QRi) control policy. The warehouse operates an (SQ, (S − 1)Q) policy, with non-negative integer S. If the warehouse is in stock then the lead time for retailer i is the fixed transportation time Li from the warehouse to that retailer. Otherwise retailer orders are met, after a delay, on a first-come first-served basis. The lead time on a warehouse order is fixed. Two further assumptions are made: that each retailer may only have one order outstanding at any time and that the transportation time from the warehouse to a retailer is not less than the warehouse lead time. The performance measures of interest are the average total stock in the system and the fraction of demand met in the retailers. Procedures for determining these performance measures and optimising the behaviour of the system are developed.  相似文献   

3.
We determine replenishment and sales decisions jointly for an inventory system with random demand, lost sales and random yield. Demands in consecutive periods are independent random variables and their distributions are known. We incorporate discretionary sales, when inventory may be set aside to satisfy future demand even if some present demand may be lost. Our objective is to minimize the total discounted cost over the problem horizon by choosing an optimal replenishment and discretionary sales policy. We obtain the structure of the optimal replenishment and discretionary sales policy and show that the optimal policy for finite horizon problem converges to that of the infinite horizon problem. Moreover, we compare the optimal policy under random yield with that under certain yield, and show that the optimal order quantity (sales quantity) under random yield is more (less) than that under certain yield.  相似文献   

4.
5.
We consider a two-echelon, continuous review inventory system under Poisson demand and a one-for-one replenishment policy. Demand is lost if no items are available at the local warehouse, the central depot, or in the pipeline in between. We give a simple, fast and accurate approach to approximate the service levels in this system. In contrast to other methods, we do not need an iterative analysis scheme. Our method works very well for a broad set of cases, with deviations to simulation below 0.1% on average and below 0.36% for 95% of all test instances.  相似文献   

6.
Continuous review and periodic review inventory models in which a fraction of demand is backordered and the remaining fraction is lost during the stockout period are considered under fuzzy environment. Fuzziness is introduced by allowing the cost components imprecise and vague to certain extent. Trapezoidal fuzzy numbers are used to represent these characteristics. The optimum policies of these models under fuzzy costs are derived. Numerical results highlighting the sensitivity in the decision variables are also described.  相似文献   

7.
Perishable products are commonly seen in inventory management. By allowing shortages and backlogging, the impact on the cost from the decay of the products can be balanced out. In a recent paper published in Computers and Industrial Engineering [P.L. Abad, Optimal lot size for a perishable good under conditions of finite production and partial backordering and lost sale, Comput. Ind. Eng. 38 (2000) 457–465] considered a problem in such context. However, his algorithm was incomplete due to flaws in his solution procedure. The purpose of this note is to explore the same production inventory models with a mixture of partial backordering and lost sales for deteriorated items. We find the criteria for the optimal solution for different cases and derive a formulated minimum value. By theoretical analysis, we develop a few lemmas to reveal parameter effects and optimal solution procedure. The solutions are illustrated by solving the same examples from Abad’s paper to illustrate the accuracy and completeness of our procedure.  相似文献   

8.
This paper considers continuous-review lost-sales inventory models with no fixed order cost and a Poisson demand process. There is a holding cost per unit per unit time and a lost sales cost per unit. The objective is to minimise the long run total cost. Base stock policies are, in general, sub-optimal under lost sales. The optimal policy would have to take full account of the remaining lead times on all the orders currently outstanding and such a policy would be too complex to analyse, let alone implement. This paper considers policies which make use of the observation that, for lost sales models, base stock policies can be improved by imposing a delay between the placement of successive orders. The performance of these policies is compared with that of the corresponding base stock policy and also with the policy of ordering at fixed and regular intervals of time.  相似文献   

9.
In this paper we consider a periodic review order-up-to inventory system with capacitated replenishments, lost sales and zero lead time. We consider discrete demand. It is shown that the initial stock levels of the different review periods form a Markov chain and we determine the transition matrix. Furthermore we study for what probability mass functions of the review period demand the Markov chain has a unique stationary distribution. Finally, we present a method to determine the fill rate.  相似文献   

10.
This paper investigates a single-product, periodic-review, non-stationary inventory system with total maximum capacity commitment and fixed ordering costs over a finite planning horizon. We characterize the optimal ordering policy as a state-dependent (s,S) policy whose parameters only depend on the sum of the net inventory and the remaining capacity. We show that such policy can degenerate into two simple policies in two special cases respectively. We also derive bounds on parameters of the optimal ordering policy.  相似文献   

11.
12.
This paper investigates a supply chain system in which a supplier prepares for the selling season by building stock levels prior to the beginning of the season and shortages realized at the beginning of the season are represented as mixtures of backorders and lost sales. Backlogged items are replenished as soon as possible through an emergency procurement as opposed to waiting until the next scheduled delivery as in many continuous review scenarios, and the backorder rate is modeled as a piecewise linear function of the magnitude of the shortage. The often intangible cost associated with lost sales and customer goodwill is also quantified. In particular, the buyer and supplier are engaged in a contractual agreement and the loss of customer goodwill from the supplier’s perspective is represented as the expected cost associated with violating the conditions of the contract. The likelihood of contract cancellation is also represented as a function of the magnitude of shortage. The optimal solution is derived in closed form for the case of exponential demand distribution, and an example problem is illustrated with numerical data in order to demonstrate calculation of the optimal solution and corresponding sensitivity analysis for demand distributions in which the solution cannot be expressed in closed form.  相似文献   

13.
We study a discrete-time periodic-review inventory system where the unmet demand is lost, and the excess inventory is subject to shrinkage. We first derive the state evolution and then introduce unnormalized conditional probabilities to transform the nonlinear state evolution into a linear one. We then prove the existence and uniqueness of the solution for the Bellman equation in the case of unbounded costs and show that the solution yields the value function.  相似文献   

14.
A two-demand-class inventory system with lost-sales and backorders   总被引:1,自引:0,他引:1  
A periodic review inventory system serves two demand classes with different priorities. Unsatisfied demands in the high-priority class are lost, whereas those in the low-priority class are backlogged. We formulate the problem as a dynamic programming model and characterize the structure of the optimal replenishment policy.  相似文献   

15.
In this paper, we consider a standing order inventory system in which an order of fixed size arrives in each period. Since demand is stochastic, such a system must allow for procurement of extra units in the case of an emergency and sell-offs of excess inventory. Assuming the average-cost criterion, Rosenshine and Obee (Operations Research 24 (1976) 1143–1155) first studied such a system and devised a 4-parameter inventory control policy that is not generally optimal. The current paper uses dynamic programming to determine the optimal control policy for a standing order system, which consists of only two operational parameters: the dispose-down-to level and order-up-to level. Either the average-cost or discounted-cost criterion can be assumed in the proposed model. Also, both the backlogged and lost-sales problems are investigated in this paper. By using a convergence theorem, we stop the dynamic programming computation and obtain the two optimal parameters.  相似文献   

16.
We consider a periodic review model where the firm manages its inventory under supply uncertainty and demand cancellation. We show that because of supply uncertainty, the optimal inventory policy has the structure of re-order point type. That is, we order if the initial inventory falls below this re-order point, otherwise we do not order. This is in contrast to the work of Yuan and Cheung (2003) who prove the optimality of an order up to policy in the absence of supply uncertainty. We also investigate the impact of supply uncertainty and demand cancellation on the performance of the supply chain. Using our model, we are able to quantify the importance of reducing the variance of either the distribution of yield or the distribution of demand cancellation. The single, multiple periods and the infinite horizon models are studied.  相似文献   

17.
In this paper we study a single stage, periodic-review inventory problem for a single item with stochastic demand. The inventory manager determines order sizes according to an order-up-to logic and observes a random yield due to quality problems in the production. We distinguish between two different states of the production process combined with different probabilities to produce a defective unit. In order to improve the production process, periodic inspections are conducted and in case of a failure the machine is repaired. Approximations are developed to evaluate the average cost for a given order-up-to level and a given inspection interval and we illustrate the existence of optimal policy parameters. The approximations are tested in a simulation study and reveal an excellent performance as they lead to near optimal policy parameters. Moreover, we decompose the problem and test different methods to compute the policy parameters either sequentially or separately. Our results show that a joint optimization of the inventory and maintenance policy leads to a better system performance and reduced costs.  相似文献   

18.
In this paper a periodic review inventory model with finite horizon and remanufacturing, manufacturing options is studied. It is assumed that demand and cost parameters are constant and a sufficiently large quantity of used products is available at the beginning of the horizon. The model is studied within the class of policies with given remanufacturing and manufacturing set up and the optimal policy is obtained within this class. The policy specifies the period of switching from remanufacturing to manufacturing (switching period), the periods where remanufacturing and manufacturing activities take place and the corresponding lot sizes. An explicit formula for the cost function and some of its properties are established. Based on these, an algorithm which partitions the set of holding cost parameters into subsets, computes the optimal policy and constructs its corresponding stability regions on every such subset is proposed.  相似文献   

19.
This paper studies a single-product, dynamic, non-stationary, stochastic inventory problem with capacity commitment, in which a buyer purchases a fixed capacity from a supplier at the beginning of a planning horizon and the buyer’s total cumulative order quantity over the planning horizon is constrained with the capacity. The objective of the buyer is to choose the capacity at the beginning of the planning horizon and the order quantity in each period to minimize the expected total cost over the planning horizon. We characterize the structure of the minimum sum of the expected ordering, storage and shortage costs in a period and thereafter and the optimal ordering policy for a given capacity. Based on the structure, we identify conditions under which a myopic ordering policy is optimal and derive an equation for the optimal capacity commitment. We then use the optimal capacity and the myopic ordering policy to evaluate the effect of the various parameters on the minimum expected total cost over the planning horizon.  相似文献   

20.
This paper considers a multi-period news-vendor problem with partially observed supply-capacity information which evolves as a Markovian Process. The supply capacity is fully observed by the buyer when the capacity is smaller than the buyer’s ordering quantity. Otherwise, the buyer knows that the current-period supply capacity is greater than its ordering quantity. Based on these two observations, the buyer updates the future supply-capacity forecasting accordingly. With a dynamic programming formulation, we prove the existence of an optimal ordering policy. We also prove that the optimal order quantity is greater than the myopic order quantity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号