首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We construct a novel multi-step iterative method for solving systems of nonlinear equations by introducing a parameter θ to generalize the multi-step Newton method while keeping its order of convergence and computational cost. By an appropriate selection of θ, the new method can both have faster convergence and have larger radius of convergence. The new iterative method only requires one Jacobian inversion per iteration, and therefore, can be efficiently implemented using Krylov subspace methods. The new method can be used to solve nonlinear systems of partial differential equations, such as complex generalized Zakharov systems of partial differential equations, by transforming them into systems of nonlinear equations by discretizing approaches in both spatial and temporal independent variables such as, for instance, the Chebyshev pseudo-spectral discretizing method. Quite extensive tests show that the new method can have significantly faster convergence and significantly larger radius of convergence than the multi-step Newton method.  相似文献   

2.
The similarity transform for the steady three‐dimensional Navier–Stokes equations of flow between two stretchable disks gives a system of nonlinear ordinary differential equations. In this article, the variational iteration method was used for solving these equations. The results have been compared with the numerical results. This article depicts that the VIM is an efficient and powerful method for solving nonlinear differential equations. This method is applicable to strongly and weakly nonlinear problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

3.
This paper applies the variational iteration method (VIM) and semi-inverse variational principle to obtain solutions of linear and nonlinear partial differential equations. The nonlinear model is considered from gas dynamics, fluid dynamics and Burgers equation. The linear model is the heat transfer (diffusion) equation. Results show that variational iteration method is a powerful mathematical tool for solving linear and nonlinear partial differential equations, and therefore, can be widely applied to engineering problems.  相似文献   

4.
In this paper we investigate and compare the variational iteration method and the successive approximations method for solving a class of nonlinear differential equations. We prove that these two methods are equivalent for solving these types of equations.  相似文献   

5.
The main objective of this paper is to use the reduced differential to transform method (RDTM) for finding the analytical approximate solutions of two integral members of nonlinear Kadomtsev–Petviashvili (KP) hierarchy equations. Comparing the approximate solutions which obtained by RDTM with the exact solutions to show that the RDTM is quite accurate, reliable and can be applied for many other nonlinear partial differential equations. The RDTM produces a solution with few and easy computation. This method is a simple and efficient method for solving the nonlinear partial differential equations. The analysis shows that our analytical approximate solutions converge very rapidly to the exact solutions.  相似文献   

6.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

7.
The aim of this paper is to present an efficient numerical procedure for solving the two-dimensional nonlinear Volterra integro-differential equations (2-DNVIDE) by two-dimensional differential transform method (2-DDTM). The technique that we used is the differential transform method, which is based on Taylor series expansion. Using the differential transform, 2-DNVIDE can be transformed to algebraic equations, and the resulting algebraic equations are called iterative equations. New theorems for the transformation of integrals and partial differential equations are introduced and proved. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments.  相似文献   

8.
In this article, a novel numerical method is proposed for nonlinear partial differential equations with space- and time-fractional derivatives. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor's formula. The fractional derivatives are considered in the Caputo sense. Several illustrative examples are given to demonstrate the effectiveness of the present method. Results obtained using the scheme presented here agree well with the analytical solutions and the numerical results presented elsewhere. Results also show that the numerical scheme is very effective and convenient for solving nonlinear partial differential equations of fractional order.  相似文献   

9.
This work presents a radial basis collocation method combined with the quasi‐Newton iteration method for solving semilinear elliptic partial differential equations. The main result in this study is that there exists an exponential convergence rate in the radial basis collocation discretization and a superlinear convergence rate in the quasi‐Newton iteration of the nonlinear partial differential equations. In this work, the numerical error associated with the employed quadrature rule is considered. It is shown that the errors in Sobolev norms for linear elliptic partial differential equations using radial basis collocation method are bounded by the truncation error of the RBF. The combined errors due to radial basis approximation, quadrature rules, and quasi‐Newton and Newton iterations are also presented. This result can be extended to finite element or finite difference method combined with any iteration methods discussed in this work. The numerical example demonstrates a good agreement between numerical results and analytical predictions. The numerical results also show that although the convergence rate of order 1.62 of the quasi‐Newton iteration scheme is slightly slower than rate of order 2 in the Newton iteration scheme, the former is more stable and less sensitive to the initial guess. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

10.
In this paper, the homotopy-perturbation method (HPM) is employed to obtain approximate analytical solutions of the Klein–Gordon and sine-Gordon equations. An efficient way of choosing the initial approximation is presented. Comparisons with the exact solutions, the solutions obtained by the Adomian decomposition method (ADM) and the variational iteration method (VIM) show the potential of HPM in solving nonlinear partial differential equations.  相似文献   

11.
In this article, differential transform method (DTM) has been successfully applied to obtain the approximate analytical solutions of the nonlinear homogeneous and non-homogeneous gas dynamic equations, shock wave equation and shallow water equations with fractional order time derivatives. The true beauty of the article is manifested in its emphatic application of Caputo fractional order time derivative on the classical equations with the achievement of the highly accurate solutions by the known series solutions and even for more complicated nonlinear fractional partial differential equations (PDEs). The method is really capable of reducing the size of the computational work besides being effective and convenient for solving fractional nonlinear equations. Numerical results for different particular cases of the equations are depicted through graphs.  相似文献   

12.
In this study, linear and nonlinear partial differential equations with the nonhomogeneous initial conditions are considered. We used Variational iteration method (VIM) and Homotopy perturbation method (HPM) for solving these equations. Both methods are used to obtain analytic solutions for different types of differential equations. Four examples are presented to show the application of the present techniques. In these schemes, the solution takes the form of a convergent series with easily computable components. The present methods perform extremely well in terms of efficiency and simplicity. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

13.
本文将Hadamard矩阵乘积引入到非线性数值计算,获得了简单的矩阵形式的非线性代数模拟方程,利用Hadamard矩阵乘积和Hadamard矩阵函数的方法,我们能够容易地构造快速收敛的简单迭代法解非线性代数方程组的迭代公式,使该法成为与Newton-Raphson法相比有竞争力的方法,我们也首次定义了一种新的特殊矩阵乘积—SJT矩阵乘积。运用SJT积,我们能够方便高效的计算Newton-Raphson法中Jacobi导数矩阵的精确解,利用Hadamard矩阵乘积的范数性质,我们也导出了非线性计算摄动误差的分析公式,此外,Hadamard积和SJT积能够被用于非线性数值解耦计算,这极大地减少了求解耦合的非线性偏微分方程组的计算工作量和内存需要量。  相似文献   

14.
In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the methods do not require linearization or small perturbation. Comparisons are also made between the exact solutions and the results of the homotopy perturbation method and variational iteration method in order to prove the precision of the results obtained from both methods mentioned.  相似文献   

15.
For the large sparse systems of weakly nonlinear equations arising in the discretizations of many classical differential and integral equations, this paper presents a class of asynchronous parallel multisplitting two-stage iteration methods for getting their solutions by the high-speed multiprocessor systems. Under suitable assumptions, we study the global convergence properties of these asynchronous multisplitting two-stage iteration methods. Moreover, for this class of new methods, we establish their local convergence theories, and precisely estimate their asymptotic convergence factors under some reasonable assumptions when the involved nonlinear mapping is only assumed to be directionally differentiable. Numerical computations show that our new methods are feasible and efficient for parallely solving the system of weakly nonlinear equations.  相似文献   

16.
In this paper, a new smoothing Newton method is proposed for solving constrained nonlinear equations. We first transform the constrained nonlinear equations to a system of semismooth equations by using the so-called absolute value function of the slack variables, and then present a new smoothing Newton method for solving the semismooth equations by constructing a new smoothing approximation function. This new method is globally and quadratically convergent. It needs to solve only one system of unconstrained equations and to perform one line search at each iteration. Numerical results show that the new algorithm works quite well.  相似文献   

17.
《Applied Mathematical Modelling》2014,38(5-6):1775-1787
In this paper, we propose a new approach of the generalized differential transform method (GDTM) for solving nonlinear fractional differential equations. In GDTM, it is a key to derive a recurrence relation of generalized differential transform (GDT) associated with the solution in the given fractional equation. However, the recurrence relations of complex nonlinear functions such as exponential, logarithmic and trigonometry functions have not been derived before in GDTM. We propose new algorithms to construct the recurrence relations of complex nonlinear functions and apply the GDTM with the proposed algorithms to solve nonlinear fractional differential equations. Several illustrative examples are demonstrated to show the effectiveness of the proposed method. It is shown that the proposed technique is robust and accurate for solving fractional differential equations.  相似文献   

18.
In recent years, many approaches have been utilized for finding the exact solutions of nonlinear systems of partial differential equations. In this paper, the first integral method introduced by Feng is adopted for solving some important nonlinear systems of partial differential equations, including, KdV, Kaup–Boussinesq and Wu–Zhang systems, analytically. By means of this method, some exact solutions for these systems of equations are formally obtained. The results obtained confirm that the proposed method is an efficient technique for analytic treatment of a wide variety of nonlinear systems of partial differential equations.  相似文献   

19.
In this work, the homotopy perturbation method (HPM), the variational iteration method (VIM) and the Adomian decomposition method (ADM) are applied to solve the Fitzhugh–Nagumo equation. Numerical solutions obtained by these methods when compared with the exact solutions reveal that the obtained solutions produce high accurate results. The results show that the HPM, the VIM and the ADM are of high accuracy and are efficient for solving the Fitzhugh–Nagumo equation. Also the results demonstrate that the introduced methods are powerful tools for solving the nonlinear partial differential equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
We justify a method for reducing a wide class of nonlinear equations (including several partial differential equations) to ordinary differential equations in locally convex spaces. The possibilities of this method are demonstrated by an example of a class of nonlinear hyperbolic partial differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号