首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesterol oxidase biosensor has been constructed by using bovine serum albumin and glutaraldehyde as cross linker to immobilize cholesterol oxidase and cholesterol esterase on a glassy carbon electrode modified with Nafion and methyl viologen. The biosensor has been used to determine total cholesterol in blood. The linear range of the determination is 2.5×10~7 to 1.0×10-4 mol/L. The detection limit is about 5.0×10~8 mol/L. The response time is 12 s. This biosensor has the advantage of high selectivity, sensitivity and short response time.  相似文献   

2.
A novel ion implantation sensor (DNA/COOH/ITO) based on DNA immobilization in COOH/ITO probe was manufactured for the first time. The surface morphologies of the electrodes were characterized by X‐ray photoelectron spectroscopy (XPS), field‐emission‐scanning electron microscopy (FSEM) and electrochemical methods. In a 0.5 mol/L PBS solution, a sensitive oxidation peak of DNA on the COOH/ITO electrode was obtained by voltammetry. The electrochemical behavior of DNA was studied. And the oxidative peak potential of DNA was +0.400 V (vs. Ag/AgCl). Its peak current was proportional to the concentration of DNA over the range of 1.0×10?8?1.0×10?6 mol/L with a detection limit of 5.0×10?9 mol/L (about 0.5 ng/mL). This sensor was applied to the direct detection of DNA samples.  相似文献   

3.
An amperometric cholesterol biosensor based on immobilization of cholesterol oxidase in a Prussian blue (PB)/polypyrrole (PPy) composite film on the surface of a glassy carbon electrode was fabricated. Hydrogen peroxide produced by the enzymatic reaction was catalytically reduced on the PB film electrode at 0 V with a sensitivity of 39 μA (mol/L)?1. Cholesterol in the concentration range of 10?5 ? 10?4 mol/L was determined with a detection limit of 6 × 10?7 mol/L by amperometric method. Normal coexisting compounds in the bio‐samples such as ascorbic acid and uric acid do not interfere with the determination. The excellent properties of the sensor in sensitivity and selectivity are attributed to the PB/PPy layer modified on the sensor.  相似文献   

4.
IntroductionOrderedfilmsofwater insolublesurfactantscanbepreparedbycastingtheirsolutionsordispersionsontoasolidsupport .1Evaporationofthesolventaftercastingleavesthinfilmself assembledintoorderedstackofbi layer ,whichissimilartobiologicalmembraneformedby…  相似文献   

5.
李建平  彭图治 《中国化学》2002,20(10):1038-1043
IntroductionCholesterolisaveryimportantbioactivecompound .Numerousattemptshavebeenmadetocreatesensitive ,selective ,reliableandlowcostcholesterolsensorsduringthelastdecadebecauseofthesignificanceinclinicaldi agnosisofcoronaryheartdiseases ,arterioscleros…  相似文献   

6.
A highly sensitive electrochemical biosensor for the detection of trace amounts of 8‐azaguanine has been designed. Double stranded (ds)DNA molecules are immobilized onto a glassy carbon electrode surface with Langmuir–Blodgett technique. The adsorptive voltammetric behaviors of 8‐azaguanine at DNA‐modified electrode were explored by means of cyclic voltammetry and square wave voltammetry. Compared with bare glassy carbon electrode (GCE), the Langmuir–Blodgett film modified electrode can greatly improve the measuring sensitivity of 8‐azaguanine. Under the optimum experimental conditions, the Langmuir–Blodgett film modified electrode in pH 3.0 Britton–Robinson buffer solutions shows a linear voltammetric response in the range of 5.0×10?8 to 1.0×10?5 mol L?1 with detection limit 9.0×10?9 mol L?1. The method proposed was applied successfully for the determination of 8‐azaguanine in diluted human urine with wonderful satisfactory.  相似文献   

7.
A highly sensitive and convenient electrochemical sensor, based on surface molecularly imprinted polymers and multiwalled carbon nanotubes, was successfully developed to detect chlorpyrifos in real samples. In order to solve the problems like uneven shapes, poor size accessibility, and low imprinting capacity, the layer of the molecularly imprinted polymer was prepared on the surface of silica nanospheres. Moreover, the doping of multiwalled carbon nanotubes greatly improved the electrical properties of developed sensor. Under the optimal conductions, the electrochemical response of the sensor is linearly proportional to the concentration of chlorpyrifos in the range of 5.0 × 10?12‐5.0 × 10?8 mol/L with a low detection limit of 8.1 × 10?13 mol/L. The prepared sensor exhibited multiple advantages such as low cost, simple preparation, convenient use, excellent selectivity, and good reproducibility. Finally, the prepared sensor was successfully used to detect chlorpyrifos in vegetable and fruit.  相似文献   

8.
基于纳米金和硫堇固定酶的过氧化氢生物传感器   总被引:7,自引:0,他引:7  
在铂电极上自组装一层纳米金(GNs), 构建负电荷的界面, 然后通过金-硫、金-氮共价键合作用和静电吸附作用自组装一层阳离子电子媒介体硫堇(Thio). 再以同样的作用自组装一层GNs和辣根过氧化酶(HRP)的混合物, 最后在电极最外层滴加一层疏水性聚合物壳聚糖(Chit), 由此制备了一种新型的过氧化氢生物传感器. 研究了工作电位、检测底液pH、温度对响应电流的影响, 以及GNs和HRP之间的相互作用, 探讨了传感器的表面形态、交流阻抗、重现性和稳定性. 该传感器的酶催化反应活化能为12.4 kJ/mol, 表观米氏常数为6.5×10-4 mo/L, 在优化的实验条件下, 所研制的传感器对H2O2的线性范围为5.6×10-5~2.6×10-3 mol/L, 检出限为1.5×10-5 mol/L. 应用此方法制备了HRP和葡萄糖氧化酶(GOD)双酶体系葡萄糖生物传感器, 并应用于实验样品葡萄糖含量的测定.  相似文献   

9.
《中国化学快报》2023,34(4):107725
Extensive application of nuclear energy has caused widespread environmental uranium contamination. New detection approaches without complicated sample pretreatment and precision instruments are in demand for on-site and in-time determination of uranyl ions in environmental monitoring, especially in an emergency situation. In this work, a simple and effective fluorescent sensor (Z)-N'-hydroxy-4-(1,2,2-triphenylvinyl)benzimidamide (TPE-A) with aggregation-induced emission (AIE) character was established and studied. It could realize to detect UO22+ via quenching the fluorescence of its aggregation-induced emission, with good selectivity and sensitivity. Such strategy shows a wide linear range from 5.0 × 10?8 mol/L to 4.5 × 10?7 mol/L (R2 = 0.9988) with exceptional sensitivity reaching 4.7 × 10?9 mol/L, which is far below the limit for uranium in drinking water (30 μg/L, ca. 1.1 × 10?7 mol/L) stipulated by the WHO. A response time less than four minutes make it rapid for uranyl ion measurement. It was applied for detection of uranyl ion in spiked river water samples with recoveries in the range of 98.7%-104.0%, comparable to those obtained by ICP-MS. With the advantages of portable apparatus, rapid detection process and high sensitivity, TPE-A can serve as a promising fluorescent sensor for the detection of UO22+ in environmental water samples.  相似文献   

10.
In this paper, the flow amperometric enzymatic biosensor based on polished silver solid amalgam electrode for determination of sarcosine in model sample under flow injection analysis conditions is presented. The biosensor works on principle of electrochemical detection of oxygen decrease during enzymatic reaction which is directly proportional to the concentration of sarcosine in sample. The whole preparation process takes about 3 h. The RSD of repeatability of 10 consecutive measurements is 1.6 % (csarcosine=1.0×10?4 mol dm?3). Under optimal conditions the calibration dependence was linear in the range 7.5×10?6–5.0×10?4 mol dm?3 and limit of detection was 2.0×10?6 mol dm?3.  相似文献   

11.
Chuanyin Liu  Jiming Hu 《Electroanalysis》2008,20(10):1067-1072
Hemoglobin was entrapped in composite electrodeposited chitosan‐multiwall carbon nanotubes (MCNTs) film by assembling gold nanoparticles and hemoglobin step by step. In phosphate buffer solution (pH 7), a pair of well‐defined and quasireversible redox peaks appeared with formal potential at ?0.289 V and peak separation of 100 mV. The redox peaks respected for the direct electrochemistry of hemoglobin at the surface of chitosan‐MCNTs‐gold nanoparticles modified electrode. The parameters of experiments have also been optimized. The composite electrode showed excellent electrocatalysis to peroxide hydrogen and oxygen, the peak current was linearly proportional to H2O2 concentration in the range from 1×10?6 mol/L to 4.7×10?4 mol/L with a detection limit of 5.0×10?7 mol/L, and this biosensor exhibited high stability, good reproducibility and better selectivity. The biosensor showed a Michaelis–Menten kinetic response as H2O2 concentration is larger than 5.0×10?4 mol/L, the apparent Michaelis–Menten constant for hydrogen peroxide was calculated to be 1.61 μmol/L.  相似文献   

12.
《Electroanalysis》2005,17(10):857-861
The carbon nanotubes decorated nanoplatinum (CNT‐Pt) were prepared using a chemical reduction method and a novel base electrode was constructed by intercalating CNT‐Pt on the surface of a waxed graphite electrode. The results showed that the nano‐particles of platinum at a waxed graphite electrode exhibits high catalytic activity for the reduction of hydrogen peroxide. The cholesterol oxidase (ChOx), chosen as a model enzyme, was immobilized with sol‐gel on the CNT‐Pt base electrode to construct a biosensor. The current response of the biosensor for cholesterol was very rapid (<20 s). The linear range for cholesterol measurement was 4.0×10?6 mol/L ?1.0×10?4 mol/L with a detection limit of 1.4×10?6 mol/L. The experiments also showed that the ChOx/sol‐gel/CNT‐Pt biosensor was sensitive and stable in detecting cholesterol in serum samples.  相似文献   

13.
《Electroanalysis》2005,17(7):630-634
Myoglobin (Myb) of horse heart is incorporated on multi‐walled carbon nanotubes (MWNTs) and immobilized at a glassy carbon (GC) electrode surface. Its electrochemical behavior and enzyme activity are characterized by employing electrochemical methods. The results indicate that MWNTs can obviously promote the direct electron transfer between Myb and electrode, and that the Myb on MWNTs behaves as an enzyme‐like activity towards the electrochemical reduction of nitric oxide (NO). Accordingly, an unmediated NO biosensor is constructed. Experimental results reveal that the peak current related to NO is linearly proportional to its concentration in the range of 2.0×10?7–4.0×10?5 mol/L. The detection limit is estimated to be 8.0×10?8 mol/L. Considering a relative standard deviation of 2.1% in seven independent determinations of 1.0×10?5 mol/L NO, this biosensor shows a good reproducibility. The biosensor based on Myb/MWNTs modified electrode can be used for the rapid determination of trace NO in aqueous solution with a good stability, nice selectivity and easy construction.  相似文献   

14.
《Electroanalysis》2003,15(12):1031-1037
A cholesterol biosensors fabricated by immobilization of cholesterol oxidase (ChOx) in a layer of silicic sol‐gel matrix on the top of a Prussian Blue‐modified glassy carbon electrode was prepared. It is based on the detection of hydrogen peroxide produced by ChOx at ?0.05 V. The half‐lifetime of the biosensor is about 35 days. Cholesterol can be determined in the concentration range of 1×10?6?8×10?5 mol/L with a detection limit of 1.2×10?7 mol/L. Normal interfering compounds, such as ascorbic acid and uric acid do not affect the determination. The high sensitivity and outstanding selectivity are attributed to the Prussian Blue film modified on the sensor.  相似文献   

15.
We report on a biosensor for organophosphate pesticides (OPs) by exploiting their inhibitory effect on the activity of acetylcholinesterase (AChE). A boron-doped diamond (BDD) electrode was modified with a nanocomposite prepared from carbon spheres (CSs; with an average diameter of 500 nm) that were synthesized from resorcinol and formaldehyde, and then were coated with gold nanoparticles (AuNPs) by chemically growing them of the CSs. Compared to a bare BDD electrode, the electron transfer resistance is lower on this new electrode. Compared to an electrode without Au-NPs, the peak potential is negatively shifted by 42 mV, and the peak current is increased by 55 %. This is ascribed to the larger surface in the AuNP-CS nanocomposite which improves the adsorption of AChE, enhances its activity, and facilitates electrocatalysis. Under optimum conditions, the inhibitory effect of chlorpyrifos is linearly related to the negative log of its concentration in the 10?11 to 10?7 M range, with a detection limit of 1.3?×?10?13 M. For methyl parathion, the inhibition effect is linear in the 10?12 to 10?6 M range, and the detection limit is 4.9?×?10?13 M. The biosensor exhibits good precision and acceptable operational and temporal stability.
Figure
A novel acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres was firstly prepared to detect organophosphate pesticides. This biosensor exhibited higher sensitivity, lower detection limit, good reproducibility and acceptable stability.  相似文献   

16.
《Electroanalysis》2005,17(17):1571-1577
A novel electrochemical biosensor for phenol based on immobilization of tyrosinase‐peroxidase on mesoporous silica is described. The enhanced sensitivity of the tyrosinase‐horseradish peroxidase based biosensor to phenol was observed on comparing with tyrosinase or horseradish peroxidase monoenzyme modified electrodes. Two enzymes retained their enzymatic activities for phenol determination without any mediator. The preparation conditions of the biosensor are discussed. Optimization of the experimental parameters was performed with regard to pH and operating potential. The phenol sensor exhibited a fast response of less than 10 seconds. The sensitivity of the biosensor for phenol was 14 μA μM?1 cm?2 with a linear range from 2×10?7 to 2.3×10?4 M and a detection limit of 4.1×10?9 M. The biosensor showed a good stability and reproducibility.  相似文献   

17.
《Analytical letters》2012,45(9):1507-1515
A uric acid biosensor was fabricated by the Langmuir–Blodgett (LB) technique to immobilize the uricase on chitosan/Prussian blue (CS/PB) prefunctionalized indium-tin oxide (ITO) electrode. The effects of ionic strengths, acidity of subphase, and uricase amount on the film were studied. The electrochemical properties of the uricase/n-nonadecanoic acid (UOx/NA) LB film proved that CS/PB was a good electro-catalyst for the reduction of hydrogen peroxide produced by enzymatic reaction of UOx, and protein molecules retained their natural electro-catalytic activity. The linear range of uric acid detection was from 5 × 10?6 mol/L to 1.15 × 10?3 mol/L with a detection limit of 1.8 × 10?7 mol/L.  相似文献   

18.
A sensitive and selective electrochemical sensor based on molecularly imprinted polymers (MIPs) was developed for caffeine (CAF) recognition and detection. The sensor was constructed through the following steps: multiwalled carbon nanotubes and gold nanoparticles were first modified onto the glassy carbon electrode surface by potentiostatic deposition method successively. Subsequently, o-aminothiophenol (ATP) was assembled on the surface of the above electrode through Au–S bond before electropolymerization. During the assembled and electropolymerization processes, CAF was embedded into the poly(o-aminothiophenol) film through hydrogen bonding interaction between CAF and ATP, forming an MIP electrochemical sensor. The morphologies and properties of the sensor were characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The recognition and determination of the sensor were observed by measuring the changes of amperometric response of the oxidation-reduction probe, [Fe(CN)6]3?/[Fe(CN)6]4?, on modified electrode. The results demonstrated that the prepared sensor had excellent selectivity and high sensitivity for CAF, and the linear range was 5.0?×?10?10?~?1.6?×?10?7?mol?L?1 with a detection limit of 9.0?×?10?11?mol?L?1 (S/N?=?3). The sensor was also successfully employed to detect CAF in tea samples.  相似文献   

19.
We report on a novel electrochemical method to detect trace pentachlorophenol (PCP) by using a chitosan (CS) modified carbon paste electrode (CS/CPE). Compared with that at a bare carbon paste electrode (CPE), the current response was greatly improved at the CS/CPE due to the enhancement effect of CS. Under optimal working conditions, the oxidation peak current of PCP was proportional to its concentration in the range of 1.0 × 10?7 to 5.0 × 10?6 and 5.0 × 10?6 to 1.0 × 10?4 mol/L, with an extremely low detection limit of 4.0 × 10?8 mol/L. Our method was successfully used to detect the PCP concentration in vegetable samples.  相似文献   

20.
《Analytical letters》2012,45(5):895-907
Abstract

An amperometric biosensor for the determination of phenols is proposed using a crude extract of sweet potato (Ipomoea batatas (L.) Lam.) as an enzymatic source of polyphenol oxidase (PPO; tyrosinase; catechol oxidase; EC 1.14.18.1). The biosensor is constructed by the immobilization of sweet potato crude extract with glutaraldehyde and bovine serum albumin onto an oxygen membrane. This biosensor provides a linear response for catechol, pyrogallol, phenol and p-cresol in the concentration ranges of 2.0×10?5-4.3×10?4mol L?1, 2.0×10?5-4.3×10?4 mol L?1, 2.0×10?5-4.5×10?4 mol L?1 and 2.0×10?5-4.5×10?4mol L?1, respectively. The response time was about 3–5 min for the useful response range, and the lifetime of this electrode was excellent for fifteen days (over 220 determinations for each enzymatic membrane). Application of this biosensor for the determination of phenols in industrial wastewaters is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号