首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of 7-NH(2)Bu(t)-nido-7-CB(10)H(12) in tetrahydrofuran (THF) with LiBu(n)(3 equiv) and then [ReBr(CO)(3)(THF)(2)] gives the rhenacarborane dianion [1-NHBu(t)-2,2,2-(CO)(3)-closo-2,1-ReCB(10)H(10)](2-), isolated as the bis-[N(PPh(3))(2)](+) salt (4). Iodine oxidation of this Re(I) intermediate gives the Re(III) complex [1,2-mu-NHBu(t)-2,2,2-(CO)(3)-closo-2,1-ReCB(10)H(10)] 6 in which the carborane functions formally as an 8-electron (6pi+ 2sigma) donor. Reaction of with ligands L in the presence of Me(3)NO gives substituted products [1,2-mu-NHBu(t)-2,2-(CO)(2)-2-L-closo-2,1-ReCB(10)H(10)][L = PPh(3)(7a), CNXyl (7b; Xyl = C(6)H(3)Me(2)-2,6), or Bu(t)C triple bond CH (7c)]. Formation of complex 7c is unexpectedly accompanied by [1,2-mu-NHBu(t)-2,2-(CO)(2)-3,2-sigma:eta(2)-{C(=CHBu(t))-CH=CHBu(t)}-closo-2,1-ReCB(10)H(9)] 8a, in which an alkyne-derived dienyl group is bound to both the rhenium centre and to an adjacent boron vertex. Complex 8a is also obtained from 7c with Bu(t)C triple bond CH and Me(3)NO. The same reaction of 7c, using PhC triple bond CH or CNXyl instead of Bu(t)C triple bond CH, gives, respectively, [1,2-micro-NHBu(t)-2,2-(CO)(2)-3,2-sigma:eta(2)-{C(=CHBu(t))-CH=CHPh}-closo-2,1-ReCB(10)H(9)] 8b and [1,2-micro-NHBu(t)-2-Bu(t)C triple bond CH-2-CO-2-CNXyl-closo-2,1-ReCB(10)H(10)] 9. Addition of donors L to results in displacement from rhenium of the pendant dienyl moiety, yielding [1,2-mu-NHBu(t)-2,2-(CO)(2)-2-L-3-{C(=CHBu(t))-CH=CHBu(t)}-closo-2,1-ReCB(10)H(9)][L = PMe(3)(10a), CNBu(t)(10b)]. Single-crystal X-ray diffraction analyses have confirmed the novel structural features of compounds 6, 7c, 8b and 9.  相似文献   

2.
The manganacarborane dianion in [N(PPh(3))(2)][NEt(4)][1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(9)] (1b) reacts with cationic transition metal-ligand fragments to give products in which the electrophilic metal groups (M') are exo-polyhedrally attached to the {closo-1,2-MnCB(9)} cage system via three-center two-electron B-H --> M' linkages and generally also by Mn-M' bonds. With {Cu(PPh(3))}(+), the Cu-Mn-Cu trimetallic species [1,6-{Cu(PPh(3))}-1,7-{Cu(PPh(3))}-6,7-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (3a) is formed, whereas reactions with {M'(dppe)}(2+) (M' = Ni, Pd; dppe = Ph(2)PCH(2)CH(2)PPh(2)) give [1,3-{Ni(dppe)}-3-(mu-H)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(8)] (5a) and [1,3,6-{Pd(dppe)}-3,6-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (5b), both of which contain M'-Mn bonds. The latter reaction with M' = Pt affords [3,6-{Pt(dppe)}-3,6-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (6), which lacks a Pt-Mn connectivity. Compound 6 itself spontaneously converts to [1-Ph-2,2,2-(CO)(3)-8,8-(dppe)-hypercloso-8,2,1-PtMnCB(9)H(9)] (7b) and thence to [3,6,7-{Mn(CO)(3)}-3,7-(mu-H)(2)-1-Ph-6,6-(dppe)-closo-6,1-PtCB(8)H(6)] (8). This sequence occurs via initial insertion of the {Pt(dppe)} unit and then extrusion of {Mn(CO)(3)} and one {BH} vertex. In the presence of alcohols ROH, compound 6 is transformed to the 7-OR substituted analogues of 7b. X-ray diffraction studies were essential in elucidating the structures encountered in compounds 5-8 and hence in understanding their behavior.  相似文献   

3.
The nine-vertex ferracarborane salt [N(PPh3)2][7,7,7-(CO)3-closo-7,1-FeCB7H8] (1) reacts with an excess of [IrCl(CO)(PPh3)2] in the presence of Tl[PF6] to form, successively, the bimetallic species [7,7,9,9,9-(CO)5-7-PPh3-closo-7,9,1-IrFeCB6H7] (3), in which one {BH}- vertex has formally been subrogated by an {Ir(CO)2(PPh3)} unit, and the trimetallic complex [6,7,9-{Ir(CO)(PPh3)2}-7,9-(mu-H)2-7,9,9-(CO)3-7-PPh3-closo-7,9,1-IrFeCB6H6] (5), which contains an {FeIr2} triangle. The {FeIrCB6} core in 5 resembles that in 3 with, in addition, the Fe...Ir connectivity being spanned by an {Ir(CO)(PPh3)2} fragment and the consequent Fe-Ir and Ir-Ir bonds bridged by hydrido ligands. In contrast to the above, treatment of the 10-vertex diferracarborane salt [N(PPh3)2][6,6,6,10,10,10-(CO)6-closo-6,10, 1-Fe2CB7H8] (2) with the same reagents yields two very different, trimetallic complexes, namely [8,10-{Ir(mu-PPh2)(Ph)(CO)(PPh3)}-8-(mu-H)-6,6,6,10,10-( CO)5-closo-6,10,1-Fe2CB7H7] (6) and [6,7,10-{Fe(CO)3}-6-(mu-H)-6,10,10,10-(CO)4-6-PPh3-closo-6,10,1-IrFeCB7H7] (7). In 6, an exo-polyhedral {IrPh(CO)(PPh3)} moiety is attached to a {closo-6,10,1-Fe2CB7} framework via a PPh2-bridged Fe-Ir bond and a B-HIr agostic-type linkage, the iridium center formally having inserted into one P-Ph bond of a PPh3 unit. Complex 7 contains an {IrFeCB7} cluster core, with an exo-polyhedral {Fe(CO)3} moiety bridging a {BIrFe} triangular face and with an additional Ir-H-Fe bridge. However, this metal atom arrangement reveals that iridium and iron moieties have exchanged exo- and endo-polyhedral sites with respect to the 10-vertex metallacarborane. X-ray diffraction studies upon 3, 5, 6, and 7 confirmed their novel structural features; some preliminary reactivity studies upon these compounds are also reported.  相似文献   

4.
Reaction between [PPh4][closo-4-CB8H9] and [Ru3(CO)12] in refluxing toluene affords the unprecedented hexaruthenium metallacarborane salt [PPh4][2,3,7-{Ru(CO)3}-2,6,11-{Ru(CO)3}-7,11,12-{Ru(CO)3}-3,6,12-(micro-H)3-2,2,7,7,11,11-(CO)6-closo-2,7,11,1-Ru3CB8H6] (1a), which contains a planar Ru6 'raft' supported by a {CB8} monocarborane cluster. Addition of [CuCl(PPh3)]4 and Tl[PF6] to a CH2Cl2 solution of 1a results in simple cation replacement, forming the analogous [Cu(PPh3)3]+ salt (1b). The phenyl-substituted monocarborane [NEt4][6-Ph-nido-6-CB9H11] reacts with [Ru3(CO)12] in refluxing 1,2-dimethoxyethane to afford the pentaruthenium cluster species [N(PPh3)2][2,3,7-{Ru(CO)3}-3,4,8-{Ru(CO)3}-7,8-(micro-H)2-1-Ph-2,2,3,3,4,4-(CO)6-hypercloso-2,3,4,1-Ru3CB8H6] (2), after addition of [N(PPh3)2]Cl. Treatment of 2 with [CuCl(PPh3)]4 and Tl[PF6] in CH2Cl2 forms the zwitterionic complex [10,12-{exo-Cu(PPh3)2}-2,3,7-{Ru(CO)3}-3,4,8-{Ru(CO)3}-7,8,10,12-(micro-H)4-1-Ph-2,2,3,3,4,4-(CO)6-hypercloso-2,3,4,1-Ru3CB8H4] (3). Substitution of CO by PPh3 with concomitant cation replacement occurs on introduction of [AuCl(PPh3)], Tl[PF6], and PPh3 to a CH2Cl2 solution of 2, forming [Au(PPh3)2][2,3,7-{Ru(CO)2PPh3}-3,4,8-{Ru(CO)2PPh3}-7,8-(micro-H)2-1-Ph-2,2,3,3,4,4-(CO)6-hypercloso-2,3,4,1-Ru3CB8H6] (4). Crystallographic studies confirmed the cluster architectures in 1b, 2, and 3.  相似文献   

5.
Addition of PPh 2Cl and Tl[PF 6] to CH 2Cl 2 solutions of [N(PPh 3) 2][6,6,6-(CO) 3- closo-6,1-FeCB 8H 9] ( 1) affords the isomeric B-substituted species [6,6,6-(CO) 3- n-(PHPh 2)- closo-6,1-FeCB 8H 8] [ n = 7 ( 2a) or 10 ( 2b)]. Deprotonation (NaH) of the phosphine ligand in 2a, with subsequent addition of [IrCl(CO)(PPh 3) 2] and Tl[PF 6], yields the neutral, zwitterionic complex [6,6,6-(CO) 3-4,7-mu-{Ir(H)(CO)(PPh 3) 2PPh 2}- closo-6,1-FeCB 8H 7] ( 3), which contains a B-P-Ir- B ring. Alternatively, deprotonation using NEt 3, followed by addition of HC[triple bond]CCH 2Br, affords [6,6,6-(CO) 3-7-(PPh 2CCMe)- closo-6,1-FeCB 8H 8] ( 4). Addition of [Co 2(CO) 8] to CH 2Cl 2 solutions of the latter gives [6,6,6-(CO) 3-7-(PPh 2-{(mu-eta (2):eta (2)-CCMe)Co 2(CO) 6})- closo-6,1-FeCB 8H 8] ( 5), which contains a {C 2Co 2} tetrahedron. In the absence of added substrates, deprotonation of the PHPh 2 group in compounds 2, followed by reaction of the resulting anions with CH 2Cl 2 solvent, affords [6,6,6-(CO) 3- n-(PPh 2CH 2Cl)- closo-6,1-FeCB 8H 8] [ n = 7 ( 6a) or 10 ( 6b)] plus [6,6-(CO) 2-6,7-mu-{PPh 2CH 2PPh 2}- closo-6,1-FeCB 8H 8] ( 7, formed from 2a), of which the latter species possesses an intramolecular B-P-C-P- Fe ring. Addition of Me 3NO to CH 2Cl 2 solutions of 2a causes loss of an Fe-bound CO ligand and formation of [6,6-(CO) 2-6,7-mu-{NMe 2CH 2PPh 2}- closo-6,1-FeCB 8H 8] ( 8), which incorporates a B-P-C-N- Fe ring. A similar reaction in the presence of ligands L yields [6,6-(CO) 2-6-L-7-(PPh 2CH 2Cl)- closo-6,1-FeCB 8H 8] [L = PEt 3 ( 9) or CNBu (t) ( 10)], in addition to 8.  相似文献   

6.
The compound [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)6}-closo-2,1-RuCB10H8] 1a reacts with PMe3 or PCy3(Cy = cyclo-C6H11) to give the structurally different species [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)5(PMe3)}-closo-2,1-RuCB10H8] 4 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)5(PCy3)}-closo-2,1-RuCB10H8]5, respectively. A symmetrically disubstituted product [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)4(PMe3)2}-closo-2,1-RuCB10H8] 6 is obtained using an excess of PMe3. In contrast, the chelating diphosphines 1,1'-(PPh2)2-Fe(eta-C5H4)2 and 1,2-(PPh2)2-closo-1,2-C2B10H10 react with 1a to yield oxidative-insertion species [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(micro-[1',1'-(PPh2)2-Fe(eta-C5H4)2])(CO)4}-closo-2,1-RuCB10H8] 7 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)4(1',2'-(PPh2)2-closo-1',2'-C2B10H10)}-closo-2,1-RuCB10H8] 8, respectively. In toluene at reflux temperatures, 1a with Bu(t)SSBu(t) gives [1-SMe2-2,2-(CO)2-7-(mu-SBu(t))-11-(mu-H)-2,7,11-{Ru2(mu-H)(mu-SBu(t))(CO)4}-closo-2,1-RuCB10H8] 9, and with Bu(t)C [triple bond] CH gives [1-SMe2-2,2-(CO)2-7-{mu:eta2-(E)-CH=C(H)Bu(t)}-11-{mu:eta2-(E)-CH=C(H)Bu(t)}-2,7,11-{Ru2(CO)5}-closo-2,1-RuCB10H8] 10. In the latter, two alkyne groups have inserted into cage B-H groups, with one of the resulting B-vinyl moieties involved in a C-H...Ru agostic bond. Oxidation of 1a with I2 or HgCl2 affords the mononuclear ruthenium complex [1-SMe2-2,2,2-(CO)3-closo-2,1-RuCB10H10] 11.  相似文献   

7.
The chiral phosphanylamides {N(R-CHMePh)(PPh(2))}(-) and {N(S-CHMePh)(PPh(2))}(-) were introduced into rare earth chemistry. Transmetalation of the enantiomeric pure lithium compounds Li{N(R-CHMePh)(PPh(2))} (1a) and Li{N(S-CHMePh)(PPh(2))} (1b) with lanthanide bis(phosphinimino)methanide dichloride [{CH(PPh(2)NSiMe(3))(2)}LnCl(2)](2) in a 2:1 molar ratio in THF afforded the enantiomeric pure complexes [{CH(PPh(2)NSiMe(3))(2)}Ln(Cl){eta(2)-N(R-CHMePh)(PPh(2))}] (Ln = Er (2a), Yb (3a), Lu (4a)) and [{CH(PPh(2)NSiMe(3))(2)}Ln(Cl){eta(2)-N(S-CHMePh)(PPh(2))}] (Ln = Er (2b), Yb (3b), Lu (4b)). The solid-state structures of 2a and 3a,b were established by single-crystal X-ray diffraction. Attempts to synthesize compounds 3 in a one-pot reaction starting from K{CH(PPh(2)NSiMe(3))(2)}, YbCl(3), and 1 resulted in the lithium chloride incorporated complex [{(Me(3)SiNPPh(2))(2)CH}Yb(mu-Cl)(2)LiCl(THF)(2)] (5). In an alternative approach to give chiral rare earth compounds in a one-pot reaction 1a or 1b was reacted with LnCl(3) and K(2)C(8)H(8) to give the enantiomeric pure cyclooctatetraene compounds [{eta(2)-N(R-CHMePh)(PPh(2))}Ln(eta(8)-C(8)H(8))] (Ln = Y (6a), Er (7a), Yb (8)) and [{eta(2)-N(S-CHMePh)(PPh(2))}Ln(eta(8)-C(8)H(8))] (Ln = Y (6b), Er (7b)). The structures of 6a,b, 7a, and 8 were confirmed by single-crystal X-ray diffraction in the solid state.  相似文献   

8.
The ferracarborane [N(PPh3)2][6,6,6,10,10,10-(CO)6-closo-6,10,1-Fe2CB7H8] reacts in CH2Cl2 with 3 molar equivalents of Ag[PF6] to yield the trifluoro-substituted species [N(PPh3)2][7,8,9-F3-6,6,6,10,10,10-(CO)6-closo-6,10,1-Fe2CB7H5]. Compound undergoes structural rearrangement in toluene at reflux temperatures, forming [N(PPh3)2][8,9,10-F3-6,6,6,7,7,7-(CO)6-closo-6,7,1-Fe2CB7H5]. Alternatively, reaction of either or with a 10-fold excess of Ag[PF6] in CH2Cl2 forms two species: namely, [N(PPh3)2][2,7,9,10-F4-6,6,6,8,8,8-(CO)6-closo-6,8,1-Fe2CB7H4], in which one further B-F substitution has occurred and the {Fe2CB7} cluster core has rearranged, plus a mono-iron co-product, [N(PPh3)2][3,8,9-F3-7,7,7-(CO)3-closo-7,1-FeCB7H5] that is formed by polyhedral contraction. Treatment of with [NO][BF4] in CH2Cl2 results in CO substitution at the 4-connected iron vertex [Fe10], producing the zwitterionic complex [7,8,9-F3-6,6,6,10,10-(CO)5-10-NO-closo-6,10,1-Fe2CB7H5]. Addition of Me3NO to a mixture of and PEt3 in CH2Cl2 also results in CO substitution, forming the isomeric species [N(PPh3)2][7,8,9-F3-6,6,m,10,10-(CO)5-n-PEt3-closo-6,10,1-Fe2CB7H5] [m=6, n=10; m=10, n=6] in a 5:1 ratio. Treatment of with [NO][BF4] and then CNBut in CH2Cl2 allows further, successive CO substitution at Fe10 to yield first a neutral, zwitterionic complex [7,8,9-F3-6,6,6,10-(CO)4-10-NO-10-PEt3-closo-6,10,1-Fe2CB7H5] and then [7,8,9-F3-6,6,6-(CO)3-10-CNBut-10-NO-10-PEt3-closo-6,10,1-Fe2CB7H5]. The molecular structures of compounds and have been established by X-ray diffraction.  相似文献   

9.
Closo-to-arachno redox flexibility in metallaheteroboranes may be viewed as a metal-to-ligand cooperative action with application in catalysis. The treatment of [PSH][arachno-4-SB(8)H(11)] with [RhCl(PPh(3))(3)] affords, after chromatography, three new 10-vertex rhodathiaboranes, [2,2,2-(H)(PPh(3))(2)-closo-2,1-RhSB(8)H(8)] (3), [6,6,9-(PPh(3))(3)-arachno-6,5-RhSB(8)H(9)] (4) and [2,2,2-(Cl)(H)(PPh(3))-6-(PPh(3))-closo-2,1-RhSB(8)H(7)] (5). 3 reacts quantitatively with PPh(3) to form 4, which, in turn, reacts with chlorinated solvents to give the chloro-ligated cluster 5. Kinetic studies demonstrate that the reaction of 3 with PPh(3) obeys a second-order rate law, with an associative mechanism. The Lewis acidity of 3 is quite remarkable, and, given its closo-to-arachno structural and electronic response, this cluster is expected to exhibit a rich chemistry.  相似文献   

10.
The reagent Li(2)[7-NMe(3)-nido-7-CB(10)H(10)] reacts with [Mo(CO)(3)(NCMe)(3)] in THF-NCMe (THF = tetrahydrofuran) to give a molybdenacarborane intermediate which, upon oxidation by CH(2)[double bond]CHCH(2)Br or I(2) and then addition of [N(PPh(3))(2)]Cl, gives the salts [N(PPh(3))(2)][2,2,2-(CO)(3)-2-X-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (X = Br (1) or I (2)). During the reaction, the cage-bound NMe(3) substituent is transferred from the cage-carbon atom to an adjacent cage-boron atom, a feature established spectroscopically in 1 and 2, and by X-ray diffraction studies on several of their derivatives. When [Rh(NCMe)(3)(eta(5)-C(5)Me(5))][BF(4)](2) is used as the oxidizing agent, the trimetallic compound [2,2,2-(CO)(3)-7-mu-H-2,7,11-[Rh(2)(mu-CO)(eta(5)-C(5)Me(5))(2)]-closo-2,1-MoCB(10)H(9)] (10) is formed, the NMe(3) group being lost. Reaction of 1 in CH(2)Cl(2) with Tl[PF(6)] in the presence of donor ligands L affords neutral zwitterionic compounds [2,2,2-(CO)(3)-2-L-3-NMe(3)-closo-2,1-MoCB(10)H(10)] for L = PPh(3) (4) or CNBu(t) (5), and [2-Bu(t)C[triple bond]CH-2,2-(CO)(2)-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (6) when L = Bu(t)C[triple bond]CH. When 1 is treated with CNBu(t) and X(2), the metal center is oxidized, and in the products obtained, [2,2,2,2-(CNBu(t))(4)-2-Br-3-X-closo-2,1-MoCB(10)H(10)] (X = Br (7), I (8)), the B-NMe(3) bond is replaced by B-X. In contrast, treatment of 2 with I(2) and cyclo-1,4-S(2)(CH(2))(4) in CH(2)Cl(2) results in oxidative substitution of the cluster and retention of the NMe(3) group, giving [2,2,2-(CO)(3)-2-I-3-NMe(3)-6-[cyclo-1,4-S(2)(CH(2))(4)]-closo-2,1-MoCB(10)H(9)] (9). The unique structural features of the new compounds were confirmed by single-crystal X-ray diffraction studies upon 6, 7, 9 and 10.  相似文献   

11.
Treatment of the 11-vertex carborane anion [closo-2-CB(10)H(11)](-) with Ni(0) reagents in tetrahydrofuran (THF) affords-via oxidative insertion reactions-12-vertex Ni(II) complexes, isolated as the salts [N(PPh(3))(2)][2,2-L(2)-closo-2,1-NiCB(10)H(11)] (L = CO (1a), CNBu(t) (1b), and CNXyl (1c; Xyl = C(6)H(3)Me(2)-2,6); L(2) = cod (1d; cod = 1,2:5,6-eta-cyclo-octa-1,5-diene)). One CO ligand in 1a is readily replaced by donors L' in the presence of Me(3)NO to give the species [N(PPh(3))(2)][2-CO-2-L'-closo-2,1-NiCB(10)H(11)] (L' = PEt(3) (1e), PPh(3) (1f), CNBu(t) (1g), and CNXyl (1h)). The anionic complexes themselves readily react with hydride abstracting reagents in the presence of donor ligands to yield zwitterionic complexes in which boron vertexes bear substituents that are bound through C, N, or O atoms. Thus, for example, 1c with H(+) and CNXyl gives [2,2,7-(CNXyl)(3)-closo-2,1-NiCB(10)H(10)] (2b), while 1f with Me(+) in the presence of OEt(2) affords [2-CO-2,11-{mu-PPh(2)(C(6)H(4)-o)}-7-OEt(2)-closo-2,1-NiCB(10)H(9)] (4), in which an additional cycloboronation of one phosphine phenyl ring has occurred. In contrast, 1f with Me(+) in the presence of NCMe gives a mixture of the isomers [2-CO-2-PPh(3)-7-{(X)-N(Me)=C(H)Me}-closo-2,1-NiCB(10)H(10)] (X identical with E (5c) and Z (5d)). X-ray diffraction analyses of compounds 1a, 2b, 4, and 5c confirmed their important structural features.  相似文献   

12.
Homo- and heterobimetallic complexes of the form [(PPh(3))(2)(mu(2)-1,8-S(2)-nap){ML(n)}] (in which (1,8-S(2)-nap)=naphtho-1,8-dithiolate and {ML(n)}={PtCl(2)} (1), {PtClMe} (2), {PtClPh} (3), {PtMe(2)} (4), {PtIMe(3)} (5) and {Mo(CO)(4)} (6)) were obtained by the addition of [PtCl(2)(NCPh)(2)], [PtClMe(cod)] (cod=1,5-cyclooctadiene), [PtClPh(cod)], [PtMe(2)(cod)], [{PtIMe(3)}(4)] and [Mo(CO)(4)(nbd)] (nbd=norbornadiene), respectively, to [Pt(PPh(3))(2)(1,8-S(2)-nap)]. Synthesis of cationic complexes was achieved by the addition of one or two equivalents of a halide abstractor, Ag[BF(4)] or Ag[ClO(4)], to [{Pt(mu-Cl)(mu-eta(2):eta(1)-C(3)H(5))}(4)], [{Pd(mu-Cl)(eta(3)-C(3)H(5))}(2)], [{IrCl(mu-Cl)(eta(5)-C(5)Me(5))}(2)] (in which C(5)Me(5)=Cp*=1,2,3,4,5-pentamethylcyclopentadienyl), [{RhCl(mu-Cl)(eta(5)-C(5)Me(5))}(2)], [PtCl(2)(PMe(2)Ph)(2)] and [{Rh(mu-Cl)(cod)}(2)] to give the appropriate coordinatively unsaturated species that, upon treatment with [(PPh(3))(2)Pt(1,8-S(2)-nap)], gave complexes of the form [(PPh(3))(2)(mu(2)-1,8-S(2)-nap){ML(n)}][X] (in which {ML(n)}[X]={Pt(eta(3)-C(3)H(5))}[ClO(4)] (7), {Pd(eta(3)-C(3)H(5))}[ClO(4)] (8), {IrCl(eta(5)-C(5)Me(5))}[ClO(4)] (9), {RhCl(eta(5)-C(5)Me(5))}[BF(4)] (10), {Pt(PMe(2)Ph)(2)}[ClO(4)](2) (11), {Rh(cod)}[ClO(4)] (12); the carbonyl complex {Rh(CO)(2)}[ClO(4)] (13) was formed by bubbling gaseous CO through a solution of 12. In all cases the naphtho-1,8-dithiolate ligand acts as a bridge between two metal centres to give a four-membered PtMS(2) ring (M=transition metal). All compounds were characterised spectroscopically. The X-ray structures of 5, 6, 7, 8, 10 and 12 reveal a binuclear PtMS(2) core with PtM distances ranging from 2.9630(8)-3.438(1) A for 8 and 5, respectively. The napS(2) mean plane is tilted with respect to the PtP(2)S(2) coordination plane, with dihedral angles in the range 49.7-76.1 degrees and the degree of tilting being related to the PtM distance and the coordination number of M. The sum of the Pt(1)coordination plane/napS(2) angle, a, and the Pt(1)coordination plane/M(2)coordination plane angle, b, a+b, is close to 120 degrees in nearly all cases. This suggests that electronic effects play a significant role in these binuclear systems.  相似文献   

13.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

14.
Oxidative addition of the silanes R(3)SiH (R(3)= Ph(3), Et(3), EtMe(2)) to the unsaturated cluster [Os(3)(micro-H)[micro(3)-Ph(2)PCH(2)PPh(C(6)H(4))](CO)(8)] leads to the saturated clusters [Os(3)(micro-H)(SiR(3))(CO)(9)(micro-dppm)](SiR(3)= SiPh(3) 1, SiEt(3) 2 and SiEtMe(2)3) and the unsaturated clusters [Os(3)(micro -H)(2)(SiR(3))[micro(3)-Ph(2)PCH(2)PPh(C(6)H(4))](CO)(7)](SiR(3)= SiPh(3) 4, SiEt(3) 5 and SiEtMe(2)6). Structures are based on spectroscopic evidence and a XRD structure of [Os(3)(micro-H)(SiPh(3))(CO)(9)(micro-dppm)] 1 in which all non-CO ligands are coordinated equatorially and the hydride and the silyl groups are mutually cis. From variable-temperature (1)H NMR spectra of the SiEt(3) compound 2, exchange of the P nuclei is clearly apparent. Simultaneous migrations of the SiEt(3) group and of the hydride from one Os-Os edge to another generate a time-averaged mirror plane in the molecule. VT (1)H NMR spectra of the somewhat less bulky compound [Os(3)(micro-H)(SiMe(2)Et)(CO)(9)(micro-dppm)] 3 have been analysed. Two isomers 3a and 3b are observed with the hydride ligand located on different Os-Os edges. Synchronous migration of the hydride and SiMe(2)Et groups is faster than the observed interconversion of isomers which occurs by hydride migration alone. The synchronous motion of H and SiR(3)only occurs when these ligands are mutually cis as in the major isomer 3a and we propose that this process requires the formation of a transient silane complex of the type [Os(3)(eta(2)-HSiR(3))(CO)(9)(micro-dppm)]. Turnstile rotation within an Os(CO)(3)(eta(2)-HSiR(3)) group leads to the observed exchange within the major isomer 3a without exchange with the minor isomer. This process is not observed for the minor isomer 3b because the hydride and the silyl group are mutually trans. Protonation to give [Os(3)(micro-H)(2)(SiR(3))(CO)(9)(micro-dppm)](+) totally suppresses the dynamic behaviour because there are no edge vacancies.  相似文献   

15.
The reagent [arachno-4-CB8H14] reacts with [Fe3(CO)12] in tetrahydrofuran (THF) at reflux temperatures, followed by addition of [N(PPh3)2]Cl, to afford [N(PPh3)2][4,9-{Fe(CO)4}-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (3). In the anion of 3, one iron atom is part of the open CBBFeBB face of a 10-vertex {arachno-9,6-FeCB8} cage, to which the second iron atom is attached via an Fe-Fe bond and an additional exo-polyhedral Fe-B sigma bond. Upon heating 3 in refluxing toluene, the closed 10-vertex species [N(PPh3)2][2,2,2-(CO)3-closo-2,1-FeCB8H9] (4) is obtained, whereas the isomeric compound [N(PPh3)2][6,6,6-(CO)3-closo-6,1-FeCB8H9] (5) is isolated upon heating [closo-4-CB8H9]- and [Fe3(CO)12] in refluxing THF with subsequent addition of [N(PPh3)2]Cl. Protonation of 3 using CF3SO3H in CH2Cl2 gives the charge-compensated compound [4,9-{Fe(CO)4}-4-(mu-H)-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (6), in which the B-Fe sigma bond of the precursor has been converted to a B-H right harpoon-up Fe linkage. In contrast, 3 with {M(PPh3)}+ gives the trimetallic species [1,3,4,9-{MFe(CO)4(PPh3)}-1,3-(mu-H)2-9,9,9-(CO)3-arachno-9,6-FeCB8H9] (M = Cu (7), Ag 8) in which the three metal centers form a V-shaped M-Fe-Fe unit. Compound 6 reacts with PEt3 in the presence of Me(3)NO to yield [4,9-(PEt3)2-9,9-(CO)2-nido-9,6-FeCB8H10] (9). In the latter, the formerly exo-polyhedral {Fe(CO)4} fragment has been replaced by a PEt3 ligand, with a second PEt3 substituting one CO group at the remaining cluster iron vertex. The novel structural features of compounds 3-9 have been confirmed by single-crystal X-ray diffraction studies.  相似文献   

16.
The diphosphine 2,4,6-(CH(3))(3)-3,5-(iPr(2)PCH(2))(2)C(6)OH (1) reacts with [OsCl(2)(PPh(3))(3)] in presence of an excess of triethylamine to yield the isomeric para-quinone methide derivatives [Os{4-(CH(2))-1-(O)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))] (2 and 3), which differ in the positions of the mutually trans hydride and chloride ligands. Complex 2 reacts with CO to afford the dicarbonyl species [Os{1-(O)-2,4,6-(CH(3))(3)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(CO)(2)] (4), which results from hydride insertion into the quinonic double bond. Protonation of 2 and 3 leads to the formation of the methylene arenium derivative [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))][OSO(2)CF(3)] (5 a). The diphosphine 1 reacts with [OsCl(2)(PPh(3))(3)] at 100 degrees C under H(2) to afford [Os{1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H(2))(PPh(3))] (6), a PCP pincer complex resulting formally from C(sp(2))--C(sp(3)) cleavage of the C--CH(3) group in 1. C--C hydrogenolysis resulting in the same complex is achieved by heating 2 under H(2) pressure. Reaction of the diphosphine substrate with [OsCl(2)(PPh(3))(3)] under H(2) at lower temperature allows the observation of a methylene arenium derivative resulting from C--H activation, [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(2)(H)] (7). This compound reacts with PPh(3) in toluene to afford the ionic derivative [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))]Cl (5 b). X-ray diffraction studies have been carried out on compounds 2, 3, 4, 5 b, 6, and 7, which allows the study of the structural variations when going from methylene arenium to quinone methide derivatives.  相似文献   

17.
Treatment of the isomeric 12-vertex nickelacarbaborane salts [NEt(4)][3-(eta3)-C(3)H(5))-closo-3,1,2-NiC(2)B(9)H(11)] and [NEt(4)][2-(eta3)-C(3)H(5))-closo-2,1,7-NiC(2)B(9)H(11)] with [CuCl(PPh(3))](4) and Tl[PF(6)] affords the zwitterionic bimetallic species [3-(eta3)-C(3)H(5))-3,4,8-[Cu(PPh(3))]-4,8-(mu-H)(2)-closo-3,1,2-NiC(2)B(9)H(9)] and [2-(eta3)-C(3)H(5))-2,6,11-(Cu(PPh(3)))-6,11-(mu-H)(2)-closo-2,1,7-NiC(2)B(9)H(9)], respectively. Similarly, the 13-vertex nickelacarbaborane [NEt(4)][4-(eta3)-C(3)H(5))-closo-4,1,6-NiC(2)B(10)H(12)] reacts with sources of mono-cationic metal fragments to form [4-(eta3)-C(3)H(5))-7,8,13-(Cu(PPh(3)))-7,8,13-(mu-H)(3)-4,1,6-closo-NiC(2)B(10)H(9)], [4-(eta3)-C(3)H(5))-3,8-(Rh(PPh(3))(2))-3,8-(mu-H)(2)-4,1,6-closo-NiC(2)B(10)H(10)] and [4-(eta3)-C(3)H(5))-3,7,8-(RuCl(PPh(3))(2))-3,7,8-(mu-H)(3)-4,1,6-closo-NiC(2)B(10)H(9)]. The molecular structures of these five new bimetallic compounds were determined by X-ray diffraction studies, confirming that exopolyhedral Cu, Rh and Ru fragments are attached to the cluster via B-H[right harpoon up]M agostic-type interactions and, in the case of the (NiC(2)B(9)) species, by a metal-metal bond.  相似文献   

18.
The synthesis and reaction chemistry of heteromultimetallic transition-metal complexes by linking diverse metal-complex building blocks with multifunctional carbon-rich alkynyl-, benzene-, and bipyridyl-based bridging units is discussed. In context with this background, the preparation of [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-(PPh(2))C(6)H(3)] (10) (dppf = 1,1'-bis(diphenylphosphino)ferrocene; tBu(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridyl; Ph = phenyl) is described; this complex can react further, leading to the successful synthesis of heterometallic complexes of higher nuclearity. Heterotetrametallic transition-metal compounds were formed when 10 was reacted with [{(eta(5)-C(5)Me(5))RhCl(2)}(2)] (18), [(Et(2)S)(2)PtCl(2)] (20) or [(tht)AuC[triple bond]C-bpy] (24) (Me = methyl; Et = ethyl; tht = tetrahydrothiophene; bpy = 2,2'-bipyridyl-5-yl). Complexes [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-{PPh(2)RhCl(2)(eta(5)-C(5)Me(5))}C(6)H(3)] (19), [{1-[(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C]-3-[(tBu(2)bpy)(CO)(3)ReC[triple bond]C]-5-(PPh(2))C(6)H(3)}(2)PtCl(2)] (21), and [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-{PPh(2)AuC[triple bond]C-bpy}C(6)H(3)] (25) were thereby obtained in good yield. After a prolonged time in solution, complex 25 undergoes a transmetallation reaction to produce [(tBu(2)bpy)(CO)(3)ReC[triple bond]C-bpy] (26). Moreover, the bipyridyl building block in 25 allowed the synthesis of Fe-Ru-Re-Au-Mo- (28) and Fe-Ru-Re-Au-Cu-Ti-based (30) assemblies on addition of [(nbd)Mo(CO)(4)] (27), (nbd = 1,5-norbornadiene), or [{[Ti](mu-sigma,pi-C[triple bond]CSiMe(3))(2)}Cu(N[triple bond]CMe)][PF(6)] (29) ([Ti] = (eta(5)-C(5)H(4)SiMe(3))(2)Ti) to 25. The identities of 5, 6, 8, 10-12, 14-16, 19, 21, 25, 26, 28, and 30 have been confirmed by elemental analysis and IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR spectroscopy. From selected samples ESI-TOF mass spectra were measured. The solid-state structures of 8, 12, 19 and 26 were additionally solved by single-crystal X-ray structure analysis, confirming the structural assignment made from spectroscopy.  相似文献   

19.
Compounds of the new tetrafluorophthalimido anion, [C(6)F(4)(CO)(2)N](-), are readily accessible by treatment of tetrafluorophthalimide with either LiNPr(i)(2) or mixtures of NEt(3) and Me(3)ECl (E = Si or Sn), to give C(6)F(4)(CO)(2)N-X (X = Li 3, SiMe(3)4, and SnMe(3)5). The reaction of the trimethylsilyl derivative 4 with AgF leads cleanly to the ion pair complex [Ag(NCMe)(2)][Ag(N(CO)(2)C(6)F(4))(2)] (6·2MeCN), which contains a linear [Ag{N(CO)(2)C(6)F(4)}(2)](-) anion and a tetracoordinate Ag(+) cation. Compound 6 reacts with iodine to give the N-iodo compound C(6)F(4)(CO)(2)NI 7, which crystallises as an acetonitrile adduct. Treatment of 6 with LAuCl affords LAu{N(CO)(2)C(6)F(4)} (L = Ph(3)P 8a, Cy(3)P 8b, or THT 9), whereas the reaction with AuCl in acetonitrile affords the heterobinuclear compound [Ag(MeCN)(2)][Au{N(CO)(2)C(6)F(4)}(2)]·MeCN (10·3MeCN). The tetrafluorophthalimido ligand is not readily displaced by donor ligands; however, the addition of B(C(6)F(5))(3)(Et(2)O) to a diethyl ether solution of 8a leads to the salt [Au(PPh(3))(2)][N{COB(C(6)F(5))(3)}(2)C(6)F(4))] 11. The analogous reaction of (THT)Au{N(CO)(2)C(6)F(4)} with B(C(6)F(5))(3) in toluene in the presence of excess norbornene (nb) gives [Au(nb)(3)][N{COB(C(6)F(5))(3)}(2)C(6)F(4))] 12. Compounds 11 and 12 contain a new non-coordinating phthalimido-bridged diborate anion with O-bonded boron atoms. The crystal structures of compounds 2-11 are reported.  相似文献   

20.
Azide complexes [M(RN(3))(CO)(3)P(2)]BPh(4)[M = Mn, Re; R = C(6)H(5)CH(2), 4-CH(3)C(6)H(4)CH(2), C(6)H(5), 4-CH(3)C(6)H(4), C(5)H(9); P = PPh(OEt)(2), PPh(2)(OEt)] were prepared by allowing tricarbonyl MH(CO)(3)P(2) hydride complexes to react first with Br?nsted acid (HBF(4), CF(3)SO(3)H) and then with organic azide in the dark. In sunlight the reaction yielded tetraazabutadiene [M(eta(2)-1,4-R(2)N(4))(CO)(2)P(2)]BPh(4) complexes or, with benzyl azide, imine [M{eta(1)-NH[double bond, length as m-dash]C(H)Ar}(CO)(3)P(2)]BPh(4)(Ar = C(6)H(5), 4-CH(3)C(6)H(4)) derivatives. Tetraazabutadiene [M(eta(2)-1,4-R(2)N(4))(CO)(2)P(2)]BPh(4) complexes were also prepared by reacting dicarbonyl MH(CO)(2)P(3) species first with Br?nsted acid and then with an excess of organic azide. Complexes were characterised spectroscopically (IR, (1)H, (31)P, (13)C, (15)N NMR data) and by the X-ray crystal structure determination of complex [Re{eta(2)-1,4-(C(6)H(5)CH(2))(2)N(4)}(CO)(2){PPh(OEt)(2)}(2)]BPh(4)(). Strong evidence for coordination of the organic azide was obtained from the (15)N NMR spectra of labelled [M(C(6)H(5)CH(2)(15)NN(15)N)(CO)(3)P(2)]BPh(4) derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号