首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
We analyze a field experiment where ambient air is injected into the soil during the summer and extracted again during the winter. A multiphase model accounting for the conductive transport as well as the convective transport with the moving liquid and gas phases is used along with a more simplified single-phase model where the convective transport is due to the gas alone. The latter model also accounts for subzero wintertime temperatures. The multiphase model captures well both the seasonal variations and the actual test sequence, the main calibration being in the adjustment of medium permeabilities based on the observed pressure responses. The effect of the injection pump on the temperature and humidity of the injection air needs to be known accurately. Taking into account the humidity of the injection air explicitly instead of using humidity-corrected enthalpy values also has an effect. The effect of various humidity and specific enthalpy assumptions is of the order of 1–1.5°C, while ignoring the wintertime subzero temperatures has an effect of 1–2°C. These differences are of the same order of magnitude as the heterogeneity-introduced differences in field data. Using the simplified single-phase model typically appears to cause a difference of 1–2°C, but can yield an even higher deviation of the order of 3–4°C.  相似文献   

3.
The diffusion coefficients of frake (Terminalia superba) were determined in the radial, tangential, and longitudinal directions at tree different temperatures: 30°C, 35°C an 40°C. The longitudinal diffusion coefficient is larger than the transverse diffusion coefficient. In addition the radial coefficient is larger than the tangential coefficient.  相似文献   

4.
The liquid/vapour phase change of water in soil is involved in many environmental geotechnical processes. In the case of hygroscopic soils, the liquid water is strongly adsorbed on the solid phase and this particular thermodynamic state can highly influence the phase change kinetics. Based on the linear Thermodynamic of Irreversible Processes ideas, the non-equilibrium phase change rate is written as a linear function of the water chemical potential difference between the liquid and vapour state. In this relation, the system is characterized by a phenomenological coefficient that depends on the state variables. Using an original experimental set-up able to analyze the response of a porous medium subjected to non-equilibrium conditions, the phase change coefficient is determined in various configurations. This paper focuses on the influence of the gas phase pressure and underlines that a low gas pressure decreases the phase change kinetics. Then, evaporation and condensation processes are compared showing an asymmetric behaviour. These experimental results are interpreted from a microscopic point of view by relying on recent works dealing with molecular dynamics numerical simulation of the liquid/gas interface.  相似文献   

5.
We present a new discharge coefficient correction method for the orifice equation for R-123 two-phase flows. In this method, an evaporator is mounted after the orifice as a vapor refrigeration cycle, and the evaporator is used to measure the quality of downstream flow through the orifice. Quality is estimated from the measured temperature and pressure of the evaporator inlet and outlet, respectively, instead of by direct measurement of quality. The condition of upstream flow of the orifice is the liquid state at 3 bar and 60 °C. The liquid flow is changed to two-phase flow after passing through the orifice. Orifice diameters of 300, 350, 400, and 450 μm are used for the experiment, and the results are analyzed. Experiments are conducted for various conditions of flow rate between 20 and 70 ml/min and for cooling loads of 60, 80, and 100 W. The results show that the quality of flow downstream from the orifice can be calculated using the enthalpy difference between the inlet and outlet of the evaporator. An equation to determine the discharge coefficient is formulated as a function of quality. We expect that these results can be used to help design a small cooling system.  相似文献   

6.
Solutions of Pyro grade nitrocellulose (NC) in dimethyl acetamide (DMA), containing between 42.5% and 60% NC (w/w), have been studied by differential scanning calorimetry and polarised light microscopy. The results showed that NC forms a lyotropic liquid crystal structure in DMA. A transition from the liquid crystal phase to an isotropic phase occurred over the temperature range 27 °C to 67 °C, and the enthalpy of transition increased with NC concentration. Rheological properties were determined using an extrusion rheometer with a slit die. The solutions were shown to have a yield stress for flow which increased with increasing NC concentration. The solutions were also found to be thixotropic.  相似文献   

7.
Summary The shape of the load-elongation curve and the temperature coefficient of the elastic modulus have been examined for the unidirectional extension of cross-linked gelatin films swollen in an alcohol-water mixture. The load-elongation curve for extensions up to 300% was of the form predicted by the kinetic theory of elasticity. The temperature coefficient of the stress at constant extension was positive and over the temperature range 50° to 70°C was proportional to absolute temperature. Between 50°C and 0°C the temperature coefficient of the stress was much greater. Over this temperature range the elastic modulus, as measured by extending a film at different temperatures, increased greatly as the temperature was lowered. It is suggested that the large temperature coefficient of the stress at temperatures below 50 °C is due to the formation of gelling cross-links causing straightening of the gelatin chains.
Zusammenfassung Die Form der Spannungs-Dehnungskurve und der Temperaturkoeffizient des Elastizitätsmoduls wurde für lineare Streckung von vernetzten Gelatine-Filmen bestimmt, die in Alkohol-Wasser-Mischungen gequollen waren. Bis zu einer Dehnung von 300% hatte die Kurve die aus der kinetischen Elastizitätstheorie zu erwartende Form. Der Temperaturkoeffizient der Spannung für konstante Dehnung war positiv und im Temperaturbereich 50–70° C proportional der absoluten Temperatur; zwischen 0 und 50° C war er viel größer. In diesem Temperaturbereich vergrößert sich der Elastizitätsmodul, gemessen durch Dehnung des Films bei verschiedenen Temperaturen, beträchtlich mit sinkender Temperatur. Es wird angenommen, daß der große Temperaturkoeffizient der Spannung bei Temperaturen unterhalb 50° C auf die Bildung gelierender Querbindungen zurückzuführen ist, die die Gelatineketten ausrichten.


Communication No. 1955 H from the Kodak Research Laboratories.  相似文献   

8.
A solution is given for a problem of plane steady motion of a heavy ideal incompressible liquid which is partially bounded from below by two planes positioned at an angle of ±30° to the horizontal. The problem may be interpreted as water discharge over a dam in the form of a wedge with apex angle 120°. The so-called fixed-weir rockfill dams have a profile similar to the one considered here [1]. The flow discharge coefficient, which is very close to the experimental value, is calculated for the dam in question.  相似文献   

9.
Summary A cryostat for use with a thermal conductivity hot wire system is described in which temperatures between –70°C and –130°C can be maintained constant to within (0.01°C). Control of temperature is made by adjusting the vacuum between a five component mixture and liquid oxygen. Extra control is made by adjusting the current through a heating coil immersed in the cryostat mixture. The temperature indicator is a platinum wire surrounding the tubes.  相似文献   

10.
The rheological and stress-optical behavior of the melts of several grades ob bisphenol-A-polycarbonate (PC) and polymethylmethacrylate (PMMA) is investigated. Pertinent flow birefringence measurements are carried out in a remodelled cone-plate apparatus [1]. The shear stress in the polymer melt is calculated from the dynamic moduli, which are determined separately. It is shown that the linear stress optical rule is obeyed. In this way, the stress-optical coefficient C of the melt can be determined. The low-Mw polycarbonates all behave as Maxwellian fluids. The main stress direction does not deviate significantly from 45°. In the temperature range from 160° to 260°C the stress-optical coefficients of the different grades lie between 3 and 4×10–9 Pa–1 and show a weak temperature dependence. The stress-optical coefficient of PMMA is about a factor of 100 lower and shows a peculiar temperature-dependence, changing its sign at 144°C. The results are discussed in terms of the anisotropy of the polarizability of the polymer chain.  相似文献   

11.
The effervescent atomization from an industrial Coker feed nozzle is compared for two different gas densities (air and mixed gas of 81.4 vol.% helium/18.6 vol.% nitrogen) at equivalent operating temperatures. The application is to observe the similarity of lab tests using air at 20 °C to the industrial process using steam at 300-400 °C. The effects of operating conditions, such as gas to liquid mass ratio, mixing pressure and void fraction on the flow regime, bubble size, and droplet size distribution were also examined in this study. The experiments were performed using mixtures of water with air or mixed gas, which resulted in gas to liquid mass ratios ranging from 1% to 4%.Stroboscopic back scattered imagery (SBSI) indicates that the average bubble size inside the nozzle conduit is similar when air and water are used as the process fluids, when compared to the case when mixed gas and water are used as the process fluids. Under similar conditions, the Phase Doppler Particle Anemometer (PDPA) data indicate that the droplet size in the spray is similar when using either mixed gas or air as the atomization gas.Experimental results obtained by high-speed video shadowgraphy (HSVS) indicate that the flow pattern inside the nozzle feeding conduit was slug flow with a tendency to attain annular flow with increased air to liquid mass ratios. Thus, from the experimental results it is evident that the smaller molecular weight of the mixed gas versus air (8.4 versus 29) does not significantly reduce the bubble (<±10% difference) and droplet size (<±1.5% difference), indicating a weak dependence of the gas phase density on two-phase atomization. This confirms that laboratory experiments on effervescent nozzles using air have reliable similarity to systems that use high temperature steam for the gas phase.  相似文献   

12.
CuAl14Ni4,2 (wt%) is a shape memory alloy which at temperatures above 60°C assumes the austenitic phase, while below 20°C it forms martensitic twins. In a single crystal these phase transitions can be observed particularly well and this paper illustrates the phenomenon by some colorful photographs.  相似文献   

13.
Ficarella  A.  Laforgia  D. 《Meccanica》1998,33(4):407-425
The present study is concerned with the phase change during rapid depressurization of fluids: the role of vapor bubbles nucleation and growth and the effect on the system fluid dynamics were modeled and experimental measurements were made. Following a control-volume approach, averaged equations governing the motion of a one-dimensional, homogeneous, no-slip two-phase flow were used considering both thermal equilibrium (equal temperature) and non-equilibrium (non-equal temperature) between the liquid and vapor phases. In the non-equilibrium model, the heat transfer from the liquid to the vapor and the corresponding mass transfer velocity were modeled. Model results were compared with experimental data for a loss-of-coolant accident in nuclear power plants: the comparison of numerical vs. experimental data showed the role of nucleation velocity during the earliest phase of rapid depressurization. The experimental study of two-phase flow in a diesel engine injection system has been carried out using a rotative pump which is operated by using a purpose-developed test-bench; pressure measurements inside the system pipes were performed using pressure transducers; moreover, an ultrasonic technique was employed to study phase change phenomena. Several measurements were performed comparing the results obtained by different experimental techniques with the model outputs.Sommario.presente studio riguarda il fenomeno della cavitazione durante la depressurizzazione di fluidi. E'stata considerata la velocità di formazione e nucleazione delle bolle di vapore e le equazioni di conservazione sono state integrate con solutori al 1°e 2°ordine di tipo ENO. Sono stati utilizzati dati sperimentali ottenuti durante incidenti per perdita di refrigerante in centrali nucleari; per quanto riguarda gli apparati di iniezione, gli autori hanno sviluppato due differenti tecniche sperimentali, basate rispettivamente sulla pressione e sulla riflessione degli ultrasuoni. Il confronto dei risultati numerici con quelli sperimentali è stato soddisfacente.  相似文献   

14.
Two experimental techniques are described for the determination of the change of specific volume of polymers with temperature and aging time, which allow measurements between – 160 °C and + 200 °C. Four technical amorphous polymers, PS, PVC, PMMA and PC have been investigated. Volume-temperature curves under constant rate of cooling are presented and interpreted with respect to relaxation processes known from other physical investigations. The rate dependence of dilatometric glass transition temperatures is compared with the time dependence of rheometric glass transition temperatures from shear creep data. Volume relaxation data at constant aging temperature are presented. Aging is found to proceed until very low temperatures in the glassy state for e.g. PMMA.For polystyrene, a comparison is made between the predictions of a very simple theory of volume relaxation due to Kovacs with experimental data, using additional information from volume temperature curves and the time temperature shift of the shear creep transition. The theory predicts a rate of volume relaxation which is much lower than that found by experiment.  相似文献   

15.
The collision of single water droplets with a hot Inconel 625 alloy surface was investigated by a two-directional flash photography technique using two digital still cameras and three flash units. The experiments were conducted under the following conditions: the pre-impact diameters of the droplets ranged from 0.53 to 0.60 mm, the impact velocities ranged from 1.7 m/s to 4.1 m/s, and the solid surface temperatures ranged from 170 °C to 500 °C. When a droplet impacted onto the solid at a temperature of 170 °C, weak boiling was observed at the liquid/solid interface. At temperatures of 200 or 300 °C, numerous vapor bubbles were formed. Numerous secondary droplets then jetted upward from the deforming droplet due to the blowout of the vapor bubbles into the atmosphere. No secondary droplets were observed for a surface temperature of 500 °C at the low-impact Weber numbers (∼30) associated with the impact inertia of the droplets. Experiments using 2.5-mm-diameter droplets were also conducted. The dimensionless collision behaviors of large and small droplets were compared under the same Weber number conditions. At temperatures of less than or equal to 300 °C, the blowout of vapor bubbles occurred at early stages for a large droplet. At a surface temperature of 500 °C, the two dimensionless deformation behaviors of the droplets were very similar to each other.  相似文献   

16.
The present work deals with computational modeling of the fluid flow and heat transfer taking place in the process of impact of a cold liquid drop (Td = 20-25 °C) onto a dry heated substrate characterized by different thermophysical properties. The computational model, based on the volume-of-fluid method for the free-surface capturing, is validated by simulating the configurations accounting for the conjugate heat transfer. The simulations were performed in a range of impact Reynolds numbers (Re = 2000-4500), Weber numbers (We = 27-110) and substrate temperatures (Ts = 100-120 °C). The considered temperature range of the drop-surface, i.e. liquid-solid system does not account for the phase change, that is boiling and evaporation. The model performances are assessed by contrasting the results to the reference database originating from the experimental and complementary numerical investigations by Pasandideh-Fard et al. [Pasandideh-Fard, M., Aziz, S., Chandra, S., Mostaghimi, J., 2001. Cooling effectiveness of a water drop impinging on a hot surface. International Journal of Heat and Fluid Flow, 22, 201-210] and Healy et al. [Healy, W., Hartley, J., Abdel-Khalik, S., 2001. On the validity of the adiabatic spreading assumption in droplet impact cooling. International Journal of Heat and Mass Transfer, 44, 3869-3881]. In addition, the thermal field obtained is analyzed along with the corresponding asymptotic analytical solution proposed by Roisman [Roisman, I.V., 2010. Fast forced liquid film spreading on a substrate: flow, heat transfer and phase transition. Journal of Fluid Mechanics, 656, 189-204]. Contrary to some previous numerical studies, the present computational model accounts for the air flow surrounding the liquid drop. This model feature enables a small air bubble to be resolved in the region of the impact point. The reported results agree reasonably well with experimental and theoretical findings with respect to the drop spreading pattern and associated heat flux and temperature distribution.  相似文献   

17.
This is the second of a two part investigation. Experiments were performed in a 50.8 mm diameter horizontal pipe with three 6.35 mm diameter branches located at the test section mid-span. The inlet length was 1.8 m, and three branch orientations were tested at 0° (side), 45° (inclined), and 90° (bottom) from horizontal. Water and air, operating at 206 kPa, were used and both fluids flowed co-currently within the inlet in the smooth-stratified regime. The inlet superficial velocity of the liquid phase ranged between 0.04 and 0.15 m/s while in the gas phase values of 0.3, 0.4, and 1 m/s were tested. Three different dual discharge combinations were tested and included side-inclined, side-bottom, and inclined-bottom. The tested branch flow Froude numbers were limited between low to moderate values which ranged between 1 and 23. Extensive experimental data are reported for the critical conditions at the onset of gas entrainment during dual discharge. A novel map was developed for the inclined-bottom branch configuration showing the relationship between the inlet superficial liquid velocity and branch Froude numbers. This map was used to quantify the three observed modes of gas entrainment during dual discharge. These modes were classified as onset of gas entrainment in the inclined branch only, in the bottom branch only, or both the inclined and bottom branches simultaneously. The critical height at the onset of gas entrainment results are compared to published models and data sets and poor agreement was found with studies conducted in stratified gas–liquid reservoirs.  相似文献   

18.
The objective of this study is to compare experimentally the thermal performances of two types of commercial nanofluids. The first is composed of oxides of alumina (γAl2O3) dispersed in water and the second one is aqueous suspensions of nanotubes of carbons (CNTs). The viscosity of the nanofluids is measured as a function of the temperature between 2 and 10 °C. An experimental device, containing three thermal buckles controlled in temperature and greatly instrumented permits to study the thermal convective transfers. The evolution of the convective coefficient permits to study the convective thermal transfers. The evolution of the convective coefficient is presented according to the Reynolds number, at low temperature from 0 to 10 °C and for the two aforementioned nanofluids. An assessment of the pressure drops in the circuit as well as of the powers of the circulator and outputs is dealt with.  相似文献   

19.
Planetary rovers are different from conventional terrestrial vehicles in many respects, making it necessary to investigate the terramechanics with a particular focus on them, which is a hot research topic at the budding stage. Predicting the wheel-soil interaction performance from the knowledge of terramechanics is of great importance to the mechanical design/evaluation/optimization, dynamics simulation, soil parameter identification, and control of planetary rovers. In this study, experiments were performed using a single-wheel testbed for wheels with different radii (135 and 157.35 mm), widths (110 and 165 mm), lug heights (0, 5, 10, and 15 mm), numbers of lugs (30, 24, 15, and 8), and lug inclination angles (0°, 5°, 10°, and 20°) under different slip ratios (0, 0.1, 0.2, 0.3, 0.4, 0.6, etc.). The influences of the vertical load (30 N, 80 N, and 150 N), moving velocity (10, 25, 40, and 55 mm/s), and repetitive passing (four times) were also studied. Experimental results shown with figures and tables and are analyzed to evaluate the wheels’ driving performance in deformable soil and to draw conclusions. The driving performance of wheels is analyzed using absolute performance indices such as drawbar pull, driving torque, and wheel sinkage and also using relative indices such as the drawbar pull coefficient, tractive efficiency, and entrance angle. The experimental results and conclusions are useful for optimal wheel design and improvement/verification of wheel-soil interaction mechanics model. The analysis methods used in this paper, such as those considering the relationships among the relative indices, can be referred to for analyzing the performance of wheels of other vehicles.  相似文献   

20.
The pressure-shear plate impact experiment has been modified to test materials at high temperatures (up to 700°C). Together with the high strain rates characteristic of this experiment (106 s–1), the high-temperature capability allows the shearing resistance of materials to be measured under conditions unattainable with other testing equipment. The compressive and shear responses of pure tungsten carbide at different temperatures are presented, as well as the results of one test on OFHC copper at a temperature of 691°C and a shear strain rate of 1.4×106 s–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号