首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
本工作用环己烷-甲苯混合溶剂测定了不同1,2-链节含量的无定形聚1,2-丁二烯的溶解度参数,进而得到它们的内聚能密度,另外测定了它们的玻璃化温度。发现1,2-链节提高了聚1,2-丁二烯的玻璃化温度,同时稍稍降低了它们的内聚能密度。认为这是1,2-链节降低了聚1,2-丁二烯分子链柔顺性的缘故。  相似文献   

2.
研究~(13)C-NMR弛豫过程能提供聚合物分子水平上缠结(拓扑和凝聚)的信息.1,2-聚丁二烯在质量分数为25%浓溶液中主链上各基团约有20%产生缠结网络,这个量与样品中1,2-链节含量和溶剂种类无关。而侧链上的端基=CH_2几乎全部是非网络型的,表现为在结点自由地滑动。  相似文献   

3.
本工作用200兆赫脉冲傅里叶变换 NMR 波谱仪测定了一系列1,2-聚丁二烯样品在溶液中~13C核自旋-晶格弛豫时间(T_1)和核Overhauser效应(NOE)。较系统地研究了1,2-聚丁二烯的分子运动与化学结构、序列结构和大分子链节构成的关系,分析了乙烯基的内旋转运动。实验结果表明,顺1,4-链节中各碳的nT_1值比1,2-链节中相应各碳的nT_1值长1倍左右;对于相同的链节,当其两旁由1,2-链节变为顺1,4-链节时,其各类碳的nT_1值都大大增加;随着1,2-链节增加,各类碳的nT_1值都明显缩短。乙烯基叔碳的nT_1值大于端碳,经计算表明,引起乙烯基叔、端碳的nT_1值不相等的主要因素是乙烯基在垂直于主链的平面上的摆动。  相似文献   

4.
通过对含氟聚合物分子链内旋转构象的分析,发现含氟聚合物与其它结构类型的聚合物一样,其玻璃化转变温度Tg与分子链横截面积A和分子链内旋转让阻因子σ之间的关系遵循同样的规律[1,2]。建议用Tg=973(σ-1.44)来计算含氟聚合物的分子链内旋转位阻因子。内旋转位阻因子相同时,含氟聚合物的玻璃化转变温度较其它结构类型的聚合物为高(图2),可归结为含氟聚合物分子链的紧密堆积。  相似文献   

5.
不同脱乙酰度壳聚糖Mark-Houwink方程的订定   总被引:28,自引:1,他引:28  
通过多步脱乙酰基反应和溶液超声波降解制备了脱乙酰度D.D在49—100%(wt),重均分子量在1.94—25.1×10~5的系列壳聚糖样品,在0.1mol/L CH_3COONa+0.2mol/L CH_3COOH溶剂中和30℃下,用光散射法首次订定出了不同D.D壳聚糖的M-H方程常数K和α值,结果如下:D.D(wt%) K×10~3(ml·g~(-)1) α69 0.104 1.1284 1.424 0.9691 6.589 0.88100 16.800 0.81导致K和α值差别的主要原因是由于壳聚糖大分子链上的胺基(—NH_2)被酸质子化后,失去了形成分子内氢键的能力,减弱了内旋转受阻程度,同时,质子化后形成的阳离子聚电解质分子链链段间以及链段与溶剂之间的相互作用增强,有效电荷密度的增加使得聚电解质溶液粘度增大。  相似文献   

6.
本文测定了一系列具有不同微观结构的1,2-聚丁二烯样品在四种溶剂的50.3MHz ~(13)C自旋-晶格弛豫时间(T_1)和核Overhauser效应(NOE)值。并用Schaefer logx~2相关时间分布模型对实验数据进行了拟合。研究了1,2-聚丁二烯在溶液中的~(13)C-NMR弛豫的溶剂效应及其与结构的关系。发现聚合物与溶剂的溶解度参数之差△δ越大,聚合物在溶液中协同链段运动趋向越明显,~(13)C自旋-晶格弛豫速率(1/T_1)越大;1,2-链节较少,分子链较柔顺时,~(13)C-NMR弛豫受溶剂影响较显著。NMR弛豫参数对结构变化的反应在良溶剂中比在不良溶剂中敏感。  相似文献   

7.
钼催化体系制备的聚1,2-丁二烯链结构   总被引:2,自引:0,他引:2  
本文利用红外光谱、~(13)C-NMR和线膨胀等方法研究了钼体系聚1,2-丁二烯的链结构,并研究了链结构的调节方法。发现烯丙基卤等极性添加剂既可以调节1,2-链节含量,又可以调节链节的立体构型。最后,利用统计理论估计了1,2-链节的各种异构体的平均序列长度。  相似文献   

8.
作为一种结构参数,聚合物的分子链内旋转位阻因子可表征聚合物分子链的柔顺性,并与聚合物的许多物理性质相关联。过去实验事实表明,聚合物的辐射交联行为与其分子链柔顺性密切相关。本工作从这一结论出发,研究聚合物的分子链内旋转让阻因子(σ)与其交联参数β之间的关系,为估算聚合物σ值提供一种新方法。  相似文献   

9.
由钴催化体系合成的间规1,2-聚丁二烯是结晶性的,熔点205—210℃,与1,2-链节含量无关。低1,2-含量(12—20mol%)时,热氧化峰温为185℃左右,高1,2-含量(95—100mol%)时,200到240℃。换言之,与主链双键相比,侧链乙烯基的热氧化反应发生在更高的温度,即在熔融后的较窄的温度范围表现出较大的热效应。高1,2-含量间规聚丁二烯热氧化的热效应和活化能值,似与合成转化率有一定联系,当达到一定转化率时,热效应急剧增高,而活化能降低,估计这与残留在试样中催化剂的量及存在形式有关。  相似文献   

10.
本文通过不同的手性二胺(pn=1,2-丙二胺、chxn=1,2-环己二胺、dpen=1,2-二苯基乙二胺)与脱氢乙酸(dha)缩合,获得了N_2O_2型手性席夫碱配体(dha-en),进而合成了相应的三对手性席夫碱Cu(Ⅱ)络合物([Cu(dha-R/S-pn)](1a和1b)、[Cu(dha-R,R/S,S-chxn)](2a和2b)、[Cu(dha-R,R/S,S-dpen)](3a和3b),对其进行的固体和溶液电子圆二色(ECD)及溶液振动圆二色(VCD)光谱测试表明,这些化合物在固体和溶液状态下的金属中心的主要配位模式和绝对构型基本一致。此外,通过单晶结构分析发现:对于络合物2a/2b以及3a/3b,中心金属Cu(Ⅱ)除了与手性dha-en四齿配位外,还与相邻分子内酯环上的羰基发生弱的轴向配位形成一维超分子螺旋链,即实现了配位键构筑的席夫碱络合物的手性超分子自组装。本文对两对手性络合物2a/2b以及3a/3b的手性结构基元及其与超分子螺旋之间的关系进行了讨论。将本文所获实验VCD光谱数据与文献报道的相关数据进行比对分析,可以相互印证,并呈现一定的绝对构型关联规律且具有手性配位立体化学结构的指纹特征。  相似文献   

11.
在γ射线照射下,线型聚合物或是交联,或是裂解,或二者兼有之。这取决于聚合物的化学结构。在辐照交联过程中聚合物的交联度及裂解度与辐照剂量成比例。有的文献认为溶胶分数与辐照剂量成正比[1],有的认为与剂量的1/2次方成正比[2]。  相似文献   

12.
The internal and recoil energy of OH from the IR MPD ofCH30H has been investigated under molecular-beam conditions by laser-induced fluorescence. The recoil energy has been obtained by Doppler spectroscopy. A Boltzmann-type distribution is found for rotation in v' = 0 and translation with temperatures Trot = (630 ± 60) and Tkin = (400 ± 20) K.  相似文献   

13.
The molecular mobility of solid deuterated tert-butyl alcohol (TBA) has been studied over a broad temperature range (103–283 K) by means of solid-state 2H NMR spectroscopy, including both line shape and anisotropy of spin–lattice relaxation analyses. It has been found that, while the hydroxyl group of the TBA molecule is immobile on the 2H NMR time scale (τC > 10(–5) s), its butyl group is highly mobile. The mobility is represented by the rotation of the methyl [CD3] groups about their 3-fold axes (C3 rotational axis) and the rotation of the entire butyl [(CD3)3-C] fragment about its 3-fold axis (C3′ rotational axis). Numerical simulations of spectra line shapes reveal that the methyl groups and the butyl fragment exhibit three-site jump rotations about their symmetry axes C3 and C3′ in the temperature range of 103–133 K, with the activation energies and preexponential factors E1 = 21 ± 2 kJ/mol, k(01) = (2.6 ± 0.5) × 10(12) s(–1) and E2 = 16 ± 2 kJ/mol, k(02) = (1 ± 0.2) × 10(12) s(–1), respectively. Analysis of the anisotropy of spin–lattice relaxation has demonstrated that the reorientation mechanism of the butyl fragment changes to a free diffusion rotational mechanism above 173 K, while the rotational mechanism of the methyl groups remains the same. The values of the activation barriers for both rotations at T > 173 K have the values, which are similar to those at 103–133 K. This indicates that the interaction potential defining these motions remains unchanged. The obtained data demonstrate that the detailed analysis of both line shape and anisotropy of spin–lattice relaxation represents a powerful tool to follow the evolution of the molecular reorientation mechanisms in organic solids.  相似文献   

14.
The 1,1-dimethylhydrazine ion ((CH3)2NNH2+*) has two low-energy dissociation channels, the loss of a hydrogen atom to form the fragment ion m/z 59, (CH3)(CH2)NNH2+, and the loss of a methyl radical to form the fragment ion m/z 45, the methylhydrazyl cation, CH3NNH2+. The dissociation of the 1,1-dimethylhydrazine ion has been investigated using threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy, in the photon energy range 8.25-31 eV, and tandem mass spectrometry. Theoretical breakdown curves have been obtained from a variational transition state theory (VTST) modeling of the two reaction channels and compared to those obtained from experiment. Seven transition states have been found at the B3-LYP/6-31+G(d) level of theory for the methyl radical loss channel in the internal energy range of 2.32-3.56 eV. The methyl loss channel transition states are found at R(N-C) = 4.265, 4.065, 3.965, 3.165, 2.765, 2.665, and 2.565 A over this internal energy range. Three transition states have been found for the hydrogen atom loss channel: R(H-C) = 2.298, 2.198, and 2.098 A. The DeltaS++(45) value, at an internal energy of 2.32 eV and a bond distance of R(N-C) = 4.265 A, is 65 J K-1 mol-1. As the internal energy increases to 3.56 eV the variational transition state moves to lower R value so that at R(N-C) = 2.565 A, the DeltaS++ decreases to 29 J K-1 mol-1. For the hydrogen atom loss channel the variation in DeltaS++ is less than that for the methyl loss channel. To obtain agreement with the experimental breakdown curves, DeltaS++(59) = 26-16 J K-1 mol-1 over the studied internal energy range. The 0 K enthalpies of formation (DeltafH0) for the two fragment ions m/z 45 and m/z 59 have been calculated from the 0 K activation energies (E0) obtained from the fitting procedure: DeltafH0[CH3NNH2+] = 906 +/- 6 kJ mol-1 and DeltafH0[(CH3)(CH2)NNH2+] = 822 +/- 7 kJ mol-1. The calculated G3 values are DeltafH0[CH3NNH2+] = 911 kJ mol-1 and DeltafH0[(CH3)(CH2)NNH2+] = 825 kJ mol-1. In addition to the two low-energy dissociation products, 21 other fragment ions have been observed in the dissociation of the 1,1-dimethylhydrazine ion as the photon energy was increased. Their appearance energies are reported.  相似文献   

15.
A quantitative comparison of ab initio calculated rate coefficients using five computational methods and five different approaches of treating hindered internal rotation and tunneling with experimental values of rate coefficients for nine carbon-centered radical additions/beta scissions at 300, 600, and 1000 K is performed. The high-accuracy compound methods, CBS-QB3 and G3B3, and the density functionals, MPW1PW91, BB1K, and BMK, have been evaluated using the following approaches: (i) the harmonic oscillator approximation; (ii) the hindered internal rotor approximation for the internal rotation about the forming/breaking bond in the transition state and product; and the hindered internal rotation approximation combined with (iii) Wigner, (iv) Skodje and Truhlar, and (v) Eckart zero-curvature tunneling corrections. The density functional theory (DFT) based values for beta-scission rate coefficients deviate significantly from the experimental ones at 300 K, and the DFT methods do not accurately predict the equilibrium coefficient. The hindered rotor approximation offers a significant improvement in the agreement with experimental rate coefficients as compared to the harmonic oscillator treatment, especially at higher temperatures. Tunneling correction factors are smaller than 1.40 at 300 K and 1.03 at 1000 K. For both the CBS-QB3 method, including the hindered rotor treatment but excluding tunneling corrections, and the G3B3 method, including hindered rotor and Eckart tunneling corrections, a mean factor of deviation with experimentally observed values of 3 is found.  相似文献   

16.
The hindered internal rotor states (n(K) = 0(0), 1(1), and 1(0)) of the CN-Ar complex with two quanta of CN stretch (v(CN) = 2), along with its ground state (v(CN) = 0), have been characterized by IR-UV double resonance and UV spectroscopy. Analysis of rotationally structured bands enable n(K) assignments and reveal perturbations due to Coriolis coupling between two closely spaced hindered rotor states, n(K) = 1(1) and 1(0). A deperturbation analysis is carried out to derive accurate rotational constants and their associated CN center-of-mass to Ar bond lengths as well as the magnitude of the coupling. The energetic ordering and spacings of the CN-Ar hindered rotor states provide a direct experimental probe of the angular dependence of the CN X (2)Σ(+) + Ar potential and permit radially averaged anisotropy parameters (V(10) = 5.2 cm(-1) and V(20) = 3.2 cm(-1)) to be determined. This analysis indicates a relatively flat potential about a linear N≡C-Ar configuration with a barrier to CN internal rotation of only ~12 cm(-1). The angular potentials determined from experiment and ab initio theory are in good accord, although theory predicts a higher barrier to CN internal rotation. A similar approach yields the infrared spectrum of H(2)-CN in the CN overtone region, which exhibits a rotationally resolved Σ ← Σ parallel band that is consistent with theoretical predictions for ortho-H(2)-CN.  相似文献   

17.
The terahertz vibration-rotation-tunneling (VRT) spectrum of the ammonia dimer (NH(3))(2) has been measured between ca. 78.5 and 91.9 cm(-1). The dipole-allowed transitions are separated into three groups that correspond to the 3-fold internal rotation of the NH(3) subunits. Transitions have been assigned for VRT states of the A-A (ortho-ortho) combinations of NH(3) monomer states. The spectrum is further complicated by strong Coriolis interactions. K = 0 <-- 0, K = 1 <-- 0, K = 0 <-- 1, and K = 1 <-- 1 progressions have been assigned. The band origins, rotational constants, asymmetry doubling, centrifugal distortion, and Coriolis coupling constant have been determined from the fit to an effective Hamiltonian. These VRT transitions are tentatively assigned to an out of plane vibration with a K = 0 state at 89.141305(47) cm(-1), and a K = 1 state at 86.77785(9) cm(-1).  相似文献   

18.
The overall rotation and internal rotation of p-cresol (4-methyl-phenol) has been studied by comparison of the microwave spectrum with accurate ab initio calculations using the principal axis method in the electronic ground state. Both internal rotations, the torsions of the methyl and the hydroxyl groups relative to the aromatic ring, have been investigated. The internal rotation of the hydroxyl group can be approximately described as the motion of a symmetrical rotor on an asymmetric frame. For the methyl group it has been found that the potential barrier hindering its internal rotation is very small with the first two nonvanishing Fourier coefficients of the potential V(3) and V(6) in the same order of magnitude. Different splittings of b-type transitions for the A and E species of the methyl torsion indicate a top-top interaction between both internal rotors through the benzene ring. An effective coupling potential for the top-top interaction could be estimated. The hindering barriers of the hydroxyl and methyl rotation have been calculated using second-order Moller-Plesset perturbation theory and the approximate coupled-cluster singles-and-doubles model (CC2) in the ground state and using CC2 and the algebraic diagrammatic construction through second order in the first electronically excited state. The results are in excellent agreement with the experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号