首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) has been used for determination of lead in plant materials using isotope-dilution inductively coupled plasma mass spectrometry. The accuracy of the method was demonstrated by analysis of a matrix certified reference material, NIST SRM 1547 Peach Leaves. Specific instrumental parameters of Q-ICP-MS, including isotope analysis mode, integration time per point, number of points per mass, and number of measurements, were optimized to obtain the best measurement precision. The precision (expressed as relative standard deviation) associated with replicate measurement of the 208Pb/206Pb isotope ratio and its mass-bias correction factor was <0.2%. Following “Example A7” of the Eurachem/CITAC Guide, the relative expanded uncertainty, U rel, (coverage factor k = 2) was found to be ±1.1%, which fulfilled the target value of ±2% maximum and was lower than the uncertainty of ±3.4% reported by NIST based on isotope-dilution thermal ionization mass spectrometry. Sample recovery of 99% was obtained.  相似文献   

2.
K-factors (= certified isotope ratio/observed isotope ratio) are determined for the isotope abundance measurements of uranium and plutonium by thermal ionisation mass spectrometry. An mdf of 0.07% and 0.18% per mass unit differing by a factor of about 3, is obtained for uranium and plutonium, respectively, employing double rhenium filament assembly in the ion source and Faraday cup as the detector using the presently available isotopic reference materials of uranium and plutonium.  相似文献   

3.
A chemical and mass-spectrometric procedure for uranium isotopic analysis using a thermal ionisation mass spectrometer equipped with a Wide Aperture Retardation Potential energy filter has been developed and applied to uranium isotopic measurements for various soil samples. Soil samples were digested using a microwave digestor. Uranium was isolated from soil samples by the chemical separation procedure based on the use of anion-exchange resin and UTEVA extraction chromatography column. The isotope ratios were measured for two certified reference materials by using a VG Sector 54-30 thermal ionisation mass spectrometer in dynamic mode with Faraday cup and Daly ion counting system. Replicates of standard reference materials showed excellent analytical agreement with established values supporting the reliability and accuracy of the method. Precision of the 235U/238U ratio was achieved by a correction factor of 0.22% amu as a function of ion-beam intensity with sample loads of around 250?ng of U. The resulting reproducibility for standards and soil samples was better than 0.2% at two standard deviations (SD). Uranium isotopic compositions have been determined in several reference soil samples such as Buffalo river sediment, NIST 2704, river sediment SRM 4350b and ocean sediment NIST-4357 and a Chernobyl soil sample. There was a significant deviation from the natural uranium in comparison with Chernobyl soil samples.  相似文献   

4.
We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6–21% for pressed pellets and 3–21% for fused solids were obtained from n = 3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches.  相似文献   

5.
The suitability of a single-detector magnetic sector inductively coupled plasma mass spectrometer for low uncertainty Cr isotope ratio measurements was evaluated. Operation at medium mass resolution (mm⩾4000) was required to eliminate the interferences from polyatomic ions commonly observed on Cr isotope masses. However, the repeatability of the ratios appeared to be far worse than expected and extremely unstable. The mass calibration was found to drift by up to 0.0016 amu on peak center (i.e. ∼12.5% of the peak width) for the duration of a measurement (i.e. 675 s). Moreover, for individual peak signals (0.12–0.36 s duration depending on isotopes) the instabilities observed, particularly for low abundant isotopes, lead to multiple maxima that could potentially complicate the data integration step. However, the major problem turned out to be the instrument software, failing to integrate the data in a reproducible and predictable manner. An ‘off line’ method of data integration was developed to overcome these problems that led to a nearly tenfold improvement in the repeatability of natural n(52Cr)/n(50Cr) isotope ratio measurements. The stability of the repeatability over 45 min improved by a factor of 2.6, the reproducibility of the ratios improved by more than a factor of 4 and the average ratio changed by ∼0.75% (and by up to 1.5% in the worst case). Under these stabilized conditions, direct isotope dilution could be applied as a primary method of measurement for the certification of the Cr amount content in a 53Cr enriched material. The isotope ratio measurements, whose repeatability varied from 0.1 to 0.7% depending on the value of the ratio, were calibrated (corrected for mass discrimination effects) using the IRMM-625 certified isotopic reference material. Combined uncertainties were estimated for all results following the ISO guide to the expression of uncertainty in measurements. A combined uncertainty (expanded, with k=2) on the Cr amount content of less than 0.6% relative was achieved, where the repeatability of the isotope ratio measurements accounted for less than 1% of this value.  相似文献   

6.
A new calibration solution reference material for the determination of perfluorooctane sulfonate anion (PFOS) and its salts has been issued as a certified reference material (CRM) by the National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). The purity amount-of-substance fraction of raw material potassium perfluorooctane sulfonate (K-PFOS) was evaluated based on the results obtained using the freezing point depression method, and the purity mass fraction of the raw material was calculated using the average molar mass of impurities, the molar mass of K-PFOS, and the purity amount-of-substance fraction. The certified concentration of this CRM was obtained by multiplying the dilution ratio of the raw material in a prepared solution (methanol) determined from the gravimetric blending method by the purity of the raw material. The preparation concentration of K-PFOS as a certified value of NMIJ CRM 4220-a was determined to be 9.93?mg?kg?1. In addition, the standard uncertainty of the certified value was evaluated from the purity evaluation as well as from sample inhomogeneity, instability, and preparation variation obtained from LC/MS measurements of different gravimetrically prepared solutions of the NMIJ CRM. Consequently, the expanded uncertainty was estimated to be 0.15?mg?kg?1 with a coverage factor k?=?2 corresponding to the half-width of estimated confidence interval of approximately 95%.  相似文献   

7.
Cholesterol measurements are of vital clinical importance and reliable reference materials are essential for method validation. Gas chromatography with mass spectrometry (GC/MS) is usually used for the high accuracy analysis of cholesterol by isotope dilution. A certified reference material for cholesterol content in human serum was analysed by isotope dilution utilising GC/MS and liquid chromatography mass spectrometry (LC/MS). The use of LC/MS avoided the need for a derivatisation step. Both LC/MS and GC/MS produced results on the measurement of cholesterol that agreed within 0.5% of the certified value. Moreover, the precision obtained for ratio measurement using both techniques are comparable and lead to relative expanded standard uncertainties (with a coverage factor of 2) varying between 0.2 and 0.5%.  相似文献   

8.
Efficient highly sensitive methods are proposed for the direct determination of nonmetallic impurities in uranium materials by inductively coupled plasma mass spectrometry (ICP-MS). The possibility for the elimination of polyatomic overlap interferences on the signals of 32S and 35Cl using high-resolution measurements (mm = 4000) was demonstrated. The influence of the operation conditions of the mass spectrometer, such as plasma power and nebulizer gas flow rate, was investigated, and the effect of the uranium matrix on the analytical signal of the isotopes to be determined was studied. The detection limit and lower limit of the analytical range for B, Si, P, S, Cl, and Br in uranium materials were estimated. The developed procedures were certified as standard trade procedures and used at the Urals Electrochemical Integrated Plant for the quality control of uranium materials.  相似文献   

9.
Species-specific stable isotope dilution in combination with gold trap- or gas chromatography (GC)-inductively coupled plasma mass spectrometry (ICP-MS) is reported for the determination of inorganic mercury and methylmercury in diatoms (Chaetoceros curvisetus). The optimum conditions for the separation parameters were established. The isotope dilution analysis was performed using 199Hg-enriched Hg2+ and laboratory-synthesized 201Hg-enriched methylmercury. The absolute detection limits obtained with isotope dilution-ICP-MS were 9 pg for total mercury and 0.6 pg for methylmercury. The relative error of 7 Hg isotopic abundances based on the peak area measurements was better than 2.0% for 20 pg of methylmercury (as Hg) and 250 pg of inorganic mercury. The accuracy of the method was validated with a biological certified reference material. The developed method was then applied to investigate the uptake of inorganic mercury and methylmercury by C. curvisetus. Continuous uptake of inorganic mercury and methylmercury was observed during 5 days of incubation.  相似文献   

10.
Isotope dilution-thermal ionisation mass spectrometry (ID-TIMS) analysis has been applied to the determination of tin in a fly ash sample supplied by the EC Joint Research Centre (Ispra, Italy). The proposed procedure includes the silica gel/phosphoric acid technique for tin thermal ionisation activation and a strict heating protocol for isotope ratio measurements. Instrumental mass discrimination factor has been previously determined measuring a natural tin standard solution. Spike solution has been prepared from 112Sn-enriched metal and quantified by reverse isotope dilution analysis. Two sample aliquots were spiked and tin was extracted with 4.5 M HCl during 25 min ultrasound exposure time. Due to the complex matrix of this fly ash material, a two-step purification stage using ion-exchange chromatography was required prior TIMS analysis. Obtained results for the two sample-spike blends (10.11 ± 0.55 and 10.50 ± 0.64 μmol g−1) are comparable, both value and uncertainty. Also a good reproducibility is observed between measurements. The proposed ID-TIMS procedure, as a primary method and due to the lack of fly ash reference materials certified for tin content, can be used to validate more routine methodologies applied to tin determination in this kind of samples.  相似文献   

11.
Two enriched isotopes, 99.94 at.% 56Fe and 99.90 at.% 54Fe, were blended under gravimetric control to prepare ten synthetic isotope samples whose 56Fe isotope abundances ranged from 95% to 20%. For multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) measurements typical polyatomic interferences were removed by using Ar and H2 as collision gas and operating the MC-ICP-MS system in soft mode. Thus high-precision measurements of the Fe isotope abundance ratios were accomplished. Based on the measurement of the synthetic isotope abundance ratios by MC-ICP-MS, the correction factor for mass discrimination was calculated and the results were in agreement with results from IRMM014. The precision of all ten correction factors was 0.044%, indicating a good linearity of the MC-ICP-MS method for different isotope abundance ratio values. An isotopic reference material was certified under the same conditions as the instrument was calibrated. The uncertainties of ten correction factors K were calculated and the final extended uncertainties of the isotopic certified Fe reference material were 5.8363(37) at.% 54Fe, 91.7621(51) at.% 56Fe, 2.1219(23) at.% 57Fe, and 0.2797(32) at.% 58Fe.  相似文献   

12.
The new so-called Quad-IRM (“Quadruple Isotope Reference Material”) was prepared from highly enriched 233U, 235U, 236U and 238U isotopic materials using an optimized combination of gravimetrical mixing and mass spectrometry. Within the mixing process the isotope ratios were adjusted to about n(233U)/n(235U)/n(236U)/n(238U) = 1/1/1/1 and certified with expanded relative uncertainties of 0.0054% per mass unit (coverage factor k = 2). This new isotope reference material is ideal for verifying the inter-calibration of multi-detector systems in isotope mass spectrometry.The certified n(233U)/n(236U) ratio of IRMM-3100a was derived from the mass metrology data of the gravimetrical mixing of highly enriched 233U and 236U materials. It was verified by thermal ionization mass spectrometry (TIMS) measurements using the classical total evaporation (TE) and modified total evaporation (MTE) methods. The n(234U)/n(236U), n(235U)/n(236U) and n(238U)/n(236U) ratios were then determined by TIMS using the n(233U)/n(236U) ratio for internal normalization and using a multi-dynamic measurement procedure in order to circumvent any possible influence and uncertainties from Faraday cup efficiencies and amplifier gain factors. The certified n(235U)/n(236U) and n(238U)/n(236U) ratios were additionally verified using the classical and modified total evaporation methods using two TIMS instruments at IRMM and one TIMS instrument at IAEA-SGAS. The verification data can be regarded as results obtained at three independent instruments at two different nuclear safeguards laboratories.  相似文献   

13.
The capability of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of uranium isotope ratios in individual particles was determined. For this purpose, we developed an experimental procedure including single particle transfer with a manipulator, chemical dissolution and isotope ratio analysis, and applied to the analysis of individual uranium particles in certified reference materials (NBL CRM U050 and U350). As the result, the 235U/238U isotope ratio for the particle with the diameter between 0.5 and 3.9 μm was successfully determined with the deviation from the certified ratio within 1.8%. The relative standard deviation (R.S.D.) of the 235U/238U isotope ratio was within 4.2%. Although the analysis of 234U/238U and 236U/238U isotope ratios gave the results with inferior precision, the R.S.D. within 20% was possible for the measurement of the particle with the diameter more than 2.1 μm. The developed procedure was successfully applied to the analysis of a simulated environmental sample prepared from a mixture of indoor dust (NIST SRM 2583) and uranium particles (NBL CRM U050, U350 and U950a). From the results, the proposed procedure was found to be an alternative analytical tool for nuclear safeguards.  相似文献   

14.
An international interlaboratory comparison of the measurement capabilities of four National Metrology Institutes (NMIs) and one Designated Institute (DI) in the determination of the chemical composition of thin Fe‐Ni alloy films was conducted via a key comparison (K‐67) of the Surface Analysis Working Group of the Consultative Committee for Amount of Substance. This comparison was made using XPS (four laboratories) and AES (one laboratory) measurements. The uncertainty budget of the measured chemical composition of a thin alloy film was dominated by the uncertainty of the certified composition of a reference specimen which had been determined by inductively coupled plasma mass spectrometry using the isotope dilution method. Pilot study P‐98 showed that the quantification using relative sensitivity factors (RSFs) of Fe and Ni derived from an alloy reference sample results in much more accurate result in comparison to an approach using RSFs derived from pure Fe and Ni films. The individual expanded uncertainties of the participants in the K‐67 comparison were found to be between 2.88 and 3.40 atomic %. The uncertainty of the key comparison reference value (KCRV) calculated from individual standard deviations and a coverage factor (k) of 2 was 1.23 atomic %. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. 81Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10–170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25–900 mg kg−1.  相似文献   

16.
Summary The relative uncertainty on the isotope abundance ratio measurements of uranium and plutonium samples by means of thermionic mass spectrometry at the Central Bureau for Nuclear Measurements (CBNM) in Geel, Belgium, has decreased to a level of about 2 · 10–4.The improvement was mainly achieved through the preparation of synthetic isotope mixtures of uranium and plutonium, to a relative uncertainty of 0.01% (computed on a 2s basis) on the ratios of isotopes with major abundances. This allowed to determine some error sources more precisely, such as: — isotope fractionation, — non-linearity of the ion beam current measuring system.As a consequence CBNM is able to prepare certified uranium isotopic reference materials (U IRM's) for distribution, with a relative uncertainty of 0.07% (computed on a 2s basis) on the235U isotope abundance and to provide reference values on samples for the (European) Interlaboratory Measurement Evaluation Programmes (REIMEP).
Nuklearanalytische Anwendung der Thermionen-Massenspektrometrie
  相似文献   

17.
A semi-preparative high-performance liquid chromatography process was evaluated as a tool to quantitatively determine the purity or percentage mass fraction content (% m/m) of organic compounds. The method is simple and does not require the identification and subsequent quantitation of organic-related structure impurities. A protocol was developed and tested on four reference materials certified for purity from 95% m/m to 99.3% m/m. Comparing the purity results of each certified reference material using the new approach with their respective certified values showed no significant analytical bias. Semi-preparative high-performance liquid chromatography has proved the potential to be a primary method directly traceable to mass with an uncertainty statement written down also in terms of mass with expanding uncertainty ranging from 0.8% to 1.3% m/m compared to 0.3 to 2.0% m/m for the certified purity values at the 95% confidence interval.  相似文献   

18.
The National Institute of Standards and Technology (NIST) has developed several Standard Reference Materials (SRMs) based on human serum. NIST SRM 909b, Human Serum, is a lyophilized human serum material with concentrations for seven organic and six inorganic analytes at two levels certified solely by definitive methods (DMs). This material provides the vehicle by which high precision, high accuracy measurements made with DMs at NIST can be transferred through the measurement hierarchy to other laboratories. Isotope dilution gas chromatographic-mass spectrometric (GC-IDMS) methods were applied to measure cholesterol, creatinine, glucose, urea, uric acid, triglycerides, and total glycerides. Thermal ionization isotope dilution mass spectrometry (TI-IDMS) was used for determination of lithium, magnesium, potassium, calcium, and chloride. In addition, chloride was determined by coulometry, providing a comparison between two DMs. Sodium, which lacks a stable isotope that would permit isotope dilution mass spectrometric (IDMS) measurement, was determined by gravimetry. SRM 909b includes certified values for total glycerides and triglycerides, which were not certified in the previous lot of this material (SRM 909a). Improvement in uniformity of vial fill weight in the production of SRM 909b resulted in smaller certified uncertainties over previous freeze-dried serum SRMs. Uncertainties at the 99% level of confidence for relative expanded uncertainty (%) for certification of the organic analytes on a mmol/L/g basis ranged from 0.44% for urea (level II) to 5.04% for glucose (level II). (In-house studies have shown glucose to be a relatively unstable analyte in similar lyophilized serum materials, degrading at about 1% per year.) Relative expanded uncertainties (99% C.I.) for certification of inorganic analytes on a mmol/L/g basis ranged from 0.25% for chloride (level I) to 0.49% for magnesium (level II). Received: 30 July 1997 / Revised: 24 October 1997 / Accepted: 31 October 1997  相似文献   

19.
Hintelmann H  Lu S 《The Analyst》2003,128(6):635-639
Variations in Hg isotope ratios in cinnabar ores obtained from different countries were detected by high precision isotope ratio measurements using multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Values of delta198/202Hg varied from 0.0-1.3 percent per thousand relative to a NIST SRM 1641d Hg solution. The typical external uncertainty of the delta values was 0.06 to 0.26 percent per thousand. Hg was introduced into the plasma as elemental Hg after reduction by sodium borohydride. A significant fractionation of lead isotopes was observed during the simultaneous generation of lead hydride, preventing normalization of the Hg isotope ratios using the measured 208/206Pb ratio. Hg ratios were instead corrected employing the simultaneously measured 205/203T1 ratio. Using a 10 ng ml(-1) Hg solution and 10 min of sampling, introducing 60 ng of Hg, the internal precision of the isotope ratio measurements was as low as 14 ppm. Absolute Hg ratios deviated from the representative IUPAC values by approximately 0.2% per u. This observation is explained by the inadequacy of the exponential law to correct for mass bias in MC-ICP-MS measurements. In the absence of a precisely characterized Hg isotope ratio standard, we were not able to determine unambiguously the absolute Hg ratios of the ore samples, highlighting the urgent need for certified standard materials.  相似文献   

20.
《Analytical letters》2012,45(17):2493-2507
In this work, an improved hydride-generation atomic fluorescence spectrometry (HG-AFS) method for the determination of total arsenic (As) in wastewater and sewage sludge samples was applied. The samples were digested completely with mixtures of HNO3 and HClO4. Analytical conditions were studied and optimized through uniform experimental design U*10(108) combined with a single factor test. A mathematical model was established, and a quadratic polynomial stepwise regression analysis by using the DPS software was employed to obtain the factors that impact the fluorescence intensity. This technique is then combined with a single factor test. The optimized experimental conditions were obtained as follows: PMT voltage was 305 V, lamp current was 70 mA, KBH4 concentration was 2.0% (m/v), carrier liquid (HCl) concentration was 5% (v/v), carrier gas (Ar) flow rate was 300 mL min?1, and reaction acidity was 10% (v/v) HCl. The pre-reduction of all forms of As to As(III) was performed by using a mixed solution of 1% thiourea and 1% ascorbic acid. The content of total As was determined under the optimized experimental conditions. The detection limits for total As in wastewater and sewage sludge were 0.09 µg L?1 and 0.01 mg kg?1, respectively. The linear ranges were 0.24–100 µg L?1, and the recovery was 91.0–102.0%. The relative standard deviation (RSD, n = 5) for eleven replicate measurements of the certified reference materials containing 60.6 ± 4.2 µg L?1 As (certified sample of water) and 10.7 ± 0.8 mg kg?1 As (certified sample of soil) were 3.1% and 1.6%, respectively. The proposed method was validated by the analysis of certified reference materials and was successfully applied to the determination of total As in real samples of wastewater and sewage sludge with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号