首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
超高分子量聚乙烯(UHMWPE)轴承材料在低速重载工况下常发生严重磨损,通过添加改性填料能够显著提升其摩擦学性能. 凹凸棒土(ATP)作为一种改性填料能够增强基体材料的机械性能进而改善其摩擦特性,但是ATP作为填料往往会因为团聚效应而降低材料的补强效果. 通过对ATP进行表面改性处理可克服团聚效应,实现ATP与基体间的均匀共混. 通过表面化学包覆改性法制备由硅烷偶联剂KH570改性处理的ATP与UHMWPE共混制成复合材料,并与纯UHMWPE材料作对照试验. 利用RTEC摩擦试验机研究复合材料在水润滑条件下摩擦系数随载荷和转速的变化,以及材料填充含量对复合材料在低速重载(v=0.55 m/s、Fz=55 N)工况下磨损性能的影响. 利用傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)与电子万能材料试验机分别对ATP改性效果、熔融结晶行为及复合材料的重要力学性能进行表征测试. 试验结束后,利用表面轮廓仪与激光共聚焦显微镜观察复合材料表面形貌并分析其磨损机理. 结果表明:硅烷偶联剂KH570对ATP的改性效果良好,填充改性ATP能提高材料的邵氏硬度,且材料的拉伸性能随填充含量的提高呈下降趋势;对比纯UHMWP材料,复合材料的摩擦系数更低,适量的ATP填充能改善材料磨损性能,减小体积磨损率;试验中改性ATP质量分数为1%的复合材料其摩擦学性能最优,在低速重载时的摩擦系数及体积磨损率与纯UHMWPE相比分别降低了52.45%和37.58%.   相似文献   

2.
采用往复式滑动摩擦磨损试验机,考察了在胎牛血清蛋白(BSA)润滑环境下,氧化石墨烯/超高分子量聚乙烯(GO/UHMWPE)复合材料的摩擦学性能.试验结束后,利用高分辨扫描电子显微镜(HR-SEM)和Micro-XAM非接触式三维表面轮廓仪观察试样表面磨痕并计算相应的磨损率.结果表明:在BSA润滑环境下,相对纯UHMWPE,尽管无机增强填料GO的添加可以显著降低复合材料的稳态摩擦系数(COF),但是随GO含量增加无明显变化.然而,复合材料的体积磨损率(WR)却随GO含量增加呈现出逐渐减小的趋势.因此无机填料GO可以显著改善UHMWPE在BSA润滑环境下的摩擦学性能.  相似文献   

3.
采用UMT-3MT往复式滑动摩擦磨损试验机,研究在透明质酸钠(SHA)润滑介质下,氧化石墨烯(GO)对基体材料超高分子量聚乙烯(UHMWPE)摩擦学性能的影响.利用高分辨扫描电子显微镜(HR-SEM)和MicroXAM非接触式3D表面轮廓仪观察试样表面磨痕形貌并计算其磨损率.结果表明:在SHA润滑介质下,无机填料GO的添加显著降低UHMWPE基复合材料的磨损率,但是,GO的添加对复合材料稳态摩擦系数和残留在SHA润滑介质中的磨粒特征无明显影响.无机填料GO的添加增强了UHMWPE在SHA润滑介质下的耐磨性能.  相似文献   

4.
采用往复式摩擦磨损试验机研究了10%(质量分数计)Al2O3增强四方氧化锆多晶Y-TZP陶瓷材料(简称10ADZ)在不同载荷下的磨损行为与机制.结果表明:随着载荷的增加和滑动时间的延长,10ADZ陶瓷的磨损率增大,但并非呈线性增加,磨损率增长幅度不同;在62 N低载荷条件下,10ADZ陶瓷的磨损机制以犁沟和塑性变形为主;在124 N载荷下其主要的磨损形式为塑性变形、微切削和微断裂;而在310 N的高载荷下其主要的磨损机制为断裂磨损.  相似文献   

5.
Cu—纳米TiB2原位复合材料的摩擦磨损性能   总被引:3,自引:3,他引:3  
采用销-盘式摩擦磨损试验机考察了Cu-纳米TiB2原位复合材料在滑动干摩擦条件下的磨损行为.结果表明:载荷和滑动速度对纳米TiB2颗粒原位增强Cu基复合材料的摩擦磨损性能有重要影响;随着载荷的增加,Cu-纳米TiB2原位复合材料的磨损率和摩擦系数增大;由于在较高载荷下发生表面开裂,TiB2增强相含量较高的原位复合材料的磨损由轻度磨损向严重磨损转化;在中等载荷下,表面保护性氧化膜和基体中纳米TiB2相使复合材料具有良好的抗软化能力,Cu-纳米TiB2原位复合材料的磨损率和摩擦系数随着滑动速度的增加而降低;在较高滑动速度下,复合材料的主要磨损机制为塑性流变和氧化磨损.  相似文献   

6.
碳黑填充超高分子量聚乙烯复合材料摩擦磨损性能研究   总被引:7,自引:5,他引:7  
采用MM-200型摩擦磨损试验机考察了载荷及偶件表面粗糙度对碳黑填充超高分子量聚乙烯(UHMWPE)复合材料摩擦磨损性能的影响;利用扫描电子显微镜观察复合材料磨损表面形貌并分析了其磨损机理.结果表明:同UHMWPE相比,碳黑填充UHMWPE的磨损质量损失随载荷增加而增大的幅度较小;偶件表面粗糙度对碳黑填充UHMWPE复合材料的摩擦磨损性能影响较大,随着偶件表面粗糙度的增大,摩擦系数和复合材料的磨损质量损失均显著增大.UHMWPE及其碳黑填充复合材料在干摩擦条件下同45“钢及SiC喷涂层涂覆45“钢对摩时主要呈现犁削和塑性变形特征,犁削和塑性变形程度随载荷和偶件表面粗糙度增加而加剧。  相似文献   

7.
采用热压烧结法制备了纯聚醚醚酮(PEEK)及MWCNT/PEEK复合材料.通过表征发现:导热系数、密度、硬度及热稳定性随多壁碳纳米管(MWCNT)含量的增加而增大.系统研究了载荷、速度及不同MWCNT含量对复合材料摩擦学性能和磨损机理的影响.结果表明,MWCNT可显著降低复合材料的摩擦系数和磨损率.在固定转速200 r/min,载荷为40和80 N,MWCNT质量分数为1%条件下,摩擦系数和磨损率最低,摩擦系数分别为0.241和0.235,磨损率分别较纯PEEK降低了60%和56%.当载荷增加到100 N,MWCNT质量分数为2%时,摩擦系数最低,磨损率较纯PEEK降低89%.固定载荷40 N,转速为400 r/min时,1%MWCNT/PEEK复合材料的磨损率最低,较纯PEEK降低了89%.当转速增大至600 r/min,2%MWCNT/PEEK复合材料的磨损率较纯PEEK降低了85%.固定转速200 r/min、载荷为40 N,MWCNT的质量分数较低时(<2%),MWCNT/PEEK复合材料的磨损机理主要是黏着磨损,MWCNT的质量分数(≥2%)较高时,磨损机理发生黏着磨损...  相似文献   

8.
采用热压成型工艺制备了偶联玻璃微珠填充的超高分子量聚乙烯(UHMWPE)复合材料,通过万能材料试验机、洛氏硬度计考察了玻璃微珠含量对复合材料力学性能、硬度的影响,对复合材料进行了X射线衍射分析(XRD)、差示扫描量热分析(DSC)和静态热机械分析(TMA),通过热变形、维卡温度测定仪考察了玻璃微珠含量对复合材料维卡软化温度的影响,通过高速环块磨损试验机和自制砂浆磨损水浴试验装置考察了玻璃微珠含量对复合材料耐摩擦磨损性能的影响,通过扫描电子显微镜观察复合材料磨损表面形貌并分析了其磨损机理.结果表明:偶联玻璃微珠在UHMWPE体系中起填充增强作用,能有效提高复合材料的硬度、维卡软化温度、熔点和玻璃化转变温度,从而降低材料的摩擦系数与磨耗.维卡软化温度最多能提高12.5%,而磨损质量最多能降低62%,玻璃微珠质量分数在5%~20%之间效果明显,材料的力学性能随玻璃微珠的含量增加而有所下降.  相似文献   

9.
车建明 《摩擦学学报》2004,24(2):144-147
考察了炭纤维增强铜基复合材料的摩擦磨损性能,利用扫描电子显微镜、电子探针X射线显微分析仪和表面轮廓测试仪等观察分析了复合材料磨损表面形貌和元素组成.结果表明,复合材料摩擦磨损性能及其磨损表面形貌与粗糙度同载荷及滑动速度密切相关,当载荷和速度小于某一临界值时,复合材料同钢对摩时的摩擦系数和磨损率均较小,而当载荷和速度超过临界值时,复合材料的摩擦系数和磨损率均大幅增大,复合材料磨损表面形成了由C、Cu和Fe等元素组成的固体润滑和防护薄膜,使得其在干摩擦条件下同钢对摩时的摩擦系数和磨损率均较低.  相似文献   

10.
采用热压烧结的方法制备了添加WS2质量百分数为10%、20%和30%的Fe-28Al-5Cr基复合材料,通过XRD和SEM等手段分析了样品的相组成和组织结构.利用自制的真空摩擦试验机测试了样品在4×10-4Pa真空下的摩擦学性能.研究结果显示:通过与WS2的复合能够显著降低Fe3Al基金属间化合物在真空条件下的摩擦系数,但三种不同WS2含量复合材料的摩擦系数差别不大.随着WS2含量增加,复合材料的磨损率逐渐降低,特别是30%复合材料的磨损率较纯Fe-28Al-5Cr的磨损率低约1个数量级.滑动速度和载荷对三种材料的摩擦系数和磨损率均有一定的影响.纯Fe3Al的磨损表面较为粗糙,出现严重的剥落坑和剥落痕迹,磨损机理为严重的疲劳磨损.添加质量百分数为10%WS2的复合材料的磨损机理为磨粒磨损和疲劳磨损;添加WS2质量百分数为20%和30%的复合材料,其磨损表面相对较为光滑平整,磨损机理为轻微剥落.因此,在复合材料制备中添加WS2能够显著提高Fe3Al金属间化合物的真空摩擦学性能.  相似文献   

11.
采用MM - 2 0 0型摩擦磨损试验机考察了载荷及对摩偶件表面SiC粒度对超高分子量聚乙烯及其纳米Al2 O3填充复合材料摩擦磨损性能的影响 ,利用扫描电子显微镜观察磨损表面形貌并分析了其磨损机理 .结果表明 :纳米Al2 O3 可以提高超高分子量聚乙烯的硬度及抗磨粒磨损性能 ;随着载荷的增大 ,超高分子量聚乙烯及纳米填充复合材料的磨损加剧 ;纳米Al2 O3 填充超高分子量聚乙烯复合材料的摩擦系数较超高分子量聚乙烯的略有增大 ;纳米Al2 O3 含量的增加有利于超高分子量聚乙烯复合材料抗磨粒磨损性能的提高 ;偶件表面喷涂SiC粒度的大小对超高分子量聚乙烯及其纳米Al2 O3 填充复合材料的磨损影响较大  相似文献   

12.
滑动模式对超高分子量聚乙烯摩擦磨损行为的影响   总被引:3,自引:1,他引:2  
在自行研制的髋关节模拟试验机上,以交叉滑动及单向滑动2种方式对比考察了蒸馏水润滑条件下超高分子量聚乙烯(UHMWPE)的摩擦磨损性能,采用扫描电子显微镜观察分析了UHMWPE的磨损表面形貌并探讨其磨损机理.结果表明:在相同载荷条件下,UHMWPE在交叉滑动方式下的磨损率明显高于单向滑动方式;在交叉滑动方式下,UHMWPE的主要磨损机制为磨粒磨损、粘着磨损及塑性变形引起的表层剥落,而在单向滑动下其磨损形式主要为磨粒磨损伴随着少量的疲劳剥片;不同滑动方式所导致的磨损机理差异是造成UHMWPE磨损性能变化的主要原因.与其它试验方式相比,在髋关节模拟试验机上所得出的试验数据更接近临床观测结果.  相似文献   

13.
采用模压法制备了聚丙烯(PP)和MoS2填充超高分子量聚乙烯(UHMWPE)复合材料;在MM-200型摩擦磨损试验机上考察了UHMWPE/PP/MoS2复合材料的摩擦磨损性能;采用扫描电子显微镜观察分析复合材料磨损表面形貌.结果表明:单独添加MoS2可以提高UHMWPE的抗磨性能,但摩擦系数增大、力学性能降低;而采用PP和MoS2对UHMWPE进行改性可以显著改善加工性能;72.7%UHMWPE/18.2%PP/9.1%MoS2三元复合材料的加工性能、承载能力和长时抗磨性能明显优于UHMWPE;UHMWPE主要发生粘着磨损和疲劳磨损;而72.7%UHMW-PE/18.2%PP/9.1%MoS2三元复合材料在相同试验条件下同钢对摩时仅发生轻微塑性变形.  相似文献   

14.
采用热压成型工艺制备了纳米ZnO填充超高分子量聚乙烯(UHMWPE)复合材料,采用销-盘式摩擦磨损试验机考察了纳米粒子对复合材料摩擦磨损性能的影响;采用扫描电子显微镜观察复合材料磨损表面形貌.结果表明:填充15%~20%的纳米ZnO可以显著改善UHMWPE的摩擦磨损性能;复合材料的磨损机理随纳米粒子含量的增加而变化,纯UHMWPE的磨损机理主要为粘着磨损和疲劳磨损,随着复合材料中纳米粒子含量增加,疲劳磨损特征逐渐消失,当其纳米粒子含量大于15%时,其磨损机理主要为粘着磨损;复合材料磨损表面出现了贫ZnO区和富ZnO区,且富ZnO区以"岛"的形式分布在贫ZnO区中.  相似文献   

15.
相变微胶囊改性UHMWPE复合材料的摩擦学性能   总被引:2,自引:2,他引:0  
以石蜡为囊芯,蜜胺树脂为高分子囊壁材料,采用原位聚合法制备了相变微胶囊,并将其作为填料添加入超高分子量聚乙烯基体中,制得相变微胶囊改性UHMWPE复合材料.分析了该复合材料的硬度和物相组成,并研究了其在室温,低速和高速试验条件下的摩擦磨损性能.结果表明:微胶囊填料的加入可以起到较好的减摩降磨作用,填料的最适宜添加比例为20%,在低速试验条件下经改性的复合材料摩擦系数较纯UHMWPE降低60%以上,高速试验条件下改性后的复合材料耐磨性较之纯UHMWPE有明显提高,不同试验条件下材料呈现不同的磨损机理.  相似文献   

16.
龚国芳  王新 《摩擦学学报》2000,20(5):321-325
在MM-200型磨损试验机上分别对以釜内聚合和熔融机械混合方法制备的高岭土填充超高分子量聚乙烯基复合材料(UHMWPE/Kaolin)在干摩擦条件下与45^#钢对摩时的摩擦磨损性能进行了研究,并用扫描电子显微镜和立体光学显微镜对其磨损表面进行了观察与分析,对材料的磨损机理进行了探讨。结果表明:引入适量的高岭土能明显降低UHMWPE的摩擦系数和磨损率,用釜内聚合方法制备的UHMWPE/Kaolin复  相似文献   

17.
以钛酸四丁酯为前驱体,凹凸棒石(ATP)为载体,分别采用溶胶凝胶法和蒸汽法制备了两种不同形貌的凹凸棒石-二氧化钛(ATP-TiO2)杂化材料,并以质量分数为5%的含量填充超高分子量聚乙烯(UHMWPE). 通过对比相同微动摩擦条件下超高分子量聚乙烯、凹凸棒石及凹凸棒石-二氧化钛杂化填料填充超高分子量聚乙烯复合材料的摩擦学性能,探究了凹凸棒石-二氧化钛杂化材料微观形貌影响复合材料微动磨损性能的机理. 结果表明:杂化材料的耐热性能较凹凸棒石有显著提升;蒸汽法制备ATP-TiO2杂化材料的比表面积更大,在基体中分散更均匀,与基体的界面结合性更好,在摩擦过程中能够有效地承载,并促进转移膜的生成,其改性的复合材料表现出最低的摩擦系数和磨损率.   相似文献   

18.
超高分子聚乙烯材料因具有优良的耐磨性、耐蚀性和轻质性而逐渐应用在船舶甲板表面.船舶甲板的湿滑、海浪冲击和颠簸环境严重影响甲板仪器设备和人员的平衡性,进而挑战其可靠性和船员人身安全.为了提升超高分子聚乙烯(UHMWPE)材料在湿滑环境下表面防滑性能,采用具有高硬度和优异増摩性能的纳米二氧化硅(SiO2)对其进行共混改性,探究不同体积分数的SiO2在摩擦磨损试验过程中对UHMWPE摩擦系数的影响规律.试验结果表明:一方面,纳米SiO2在一定程度上削弱了水膜在纳米SiO2改性UHMWPE复合材料的浸润能力和吸附性,使其从亲水性逐步向疏水性转变,改善湿滑环境下的防滑效果;另一方面,纳米SiO2颗粒坚硬且不易变形的特性让其逐渐在摩擦磨损过程中显露出来,在外界载荷的作用下与陶瓷球之间形成啮合摩擦现象,导致UHMWPE的摩擦系数呈现上升趋势,最终表现出与干摩擦相近的摩擦系数,达到防滑需求.研究结果对设计和制造一种能在湿滑环境下具有优异防滑性能的船舶甲板高分子复合材料提供理论支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号