首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let $\Phi $ be a continuous $n\times n$ matrix-valued function on the unit circle $\mathbb T $ such that the $(k-1)$ st singular value of the Hankel operator with symbol $\Phi $ is greater than the $k$ th singular value. In this case, it is well-known that $\Phi $ has a unique superoptimal meromorphic approximant $Q$ in $H^{\infty }_{(k)}$ ; that is, $Q$ has at most $k$ poles in the unit disc $\mathbb D $ (in the sense that the McMillan degree of $Q$ in $\mathbb D $ is at most $k$ ) and $Q$ minimizes the essential suprema of singular values $s_{j}\left((\Phi -Q)(\zeta )\right)\!, j\ge 0$ , with respect to the lexicographic ordering. For each $j\ge 0$ , the essential supremum of $s_{j}\left((\Phi -Q)(\zeta )\right)$ is called the $j$ th superoptimal singular value of degree $k$ of $\Phi $ . We prove that if $\Phi $ has $n$ non-zero superoptimal singular values of degree $k$ , then the Toeplitz operator $T_{\Phi -Q}$ with symbol $\Phi -Q$ is Fredholm and has index $$ \mathrm{ind}T_{\Phi -Q}=\dim \ker T_{\Phi -Q}=2k+\dim \mathcal E , $$ where $\mathcal E =\{ \xi \in \ker H_{Q}: \Vert H_{\Phi }\xi \Vert _{2}=\Vert (\Phi -Q)\xi \Vert _{2}\}$ and $H_{\Phi }$ denotes the Hankel operator with symbol $\Phi $ . This result can in fact be extended from continuous matrix-valued functions to the wider class of $k$ -admissible matrix-valued functions, i.e. essentially bounded $n\times n$ matrix-valued functions $\Phi $ on $\mathbb T $ for which the essential norm of the Hankel operator $H_{\Phi }$ is strictly less than the smallest non-zero superoptimal singular value of degree $k$ of $\Phi $ .  相似文献   

2.
For every convex disk $K$ (a convex compact subset of the plane, with non-void interior), the packing density $\delta (K)$ and covering density ${\vartheta (K)}$ form an ordered pair of real numbers, i.e., a point in $\mathbb{R }^2$ . The set $\varOmega $ consisting of points assigned this way to all convex disks is the subject of this article. A few known inequalities on $\delta (K)$ and ${\vartheta (K)}$ jointly outline a relatively small convex polygon $P$ that contains $\varOmega $ , while the exact shape of $\varOmega $ remains a mystery. Here we describe explicitly a leaf-shaped convex region $\Lambda $ contained in $\varOmega $ and occupying a good portion of $P$ . The sets $\varOmega _T$ and $\varOmega _L$ of translational packing and covering densities and lattice packing and covering densities are defined similarly, restricting the allowed arrangements of $K$ to translated copies or lattice arrangements, respectively. Due to affine invariance of the translative and lattice density functions, the sets $\varOmega _T$ and $\varOmega _L$ are compact. Furthermore, the sets $\varOmega , \,\varOmega _T$ and $\varOmega _L$ contain the subsets $\varOmega ^\star , \,\varOmega _T^\star $ and $\varOmega _L^\star $ respectively, corresponding to the centrally symmetric convex disks $K$ , and our leaf $\Lambda $ is contained in each of $\varOmega ^\star , \,\varOmega _T^\star $ and $\varOmega _L^\star $ .  相似文献   

3.
Let $\mathfrak{g }$ be a complex, semisimple Lie algebra. Drinfeld showed that the quantum loop algebra $U_\hbar (L\mathfrak g )$ of $\mathfrak{g }$ degenerates to the Yangian ${Y_\hbar (\mathfrak g )}$ . We strengthen this result by constructing an explicit algebra homomorphism $\Phi $ from $U_\hbar (L\mathfrak g )$ to the completion of ${Y_\hbar (\mathfrak g )}$ with respect to its grading. We show moreover that $\Phi $ becomes an isomorphism when ${U_\hbar (L\mathfrak g )}$ is completed with respect to its evaluation ideal. We construct a similar homomorphism for $\mathfrak{g }=\mathfrak{gl }_n$ and show that it intertwines the actions of $U_\hbar (L\mathfrak gl _{n})$ and $Y_\hbar (\mathfrak gl _{n})$ on the equivariant $K$ -theory and cohomology of the variety of $n$ -step flags in ${\mathbb{C }}^d$ constructed by Ginzburg–Vasserot.  相似文献   

4.
We study the following nonlinear elliptic system of Lane–Emden type $$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$ where ${\lambda \in \mathbb{R}}$ . If ${\lambda \geq 0}$ and ${\Omega}$ is an unbounded cylinder, i.e., ${\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}$ , ${N - m \geq 2, m \geq 1}$ , existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if ${\lambda \in \mathbb{R}}$ and ${\Omega}$ is a bounded domain in ${\mathbb{R}^{N}, N \geq 3}$ . In particular, a good finite dimensional decomposition of the Banach space in which we work is given.  相似文献   

5.
Suppose that f is a holomorphic self map of the unit disk ${\mathbb{D}}$ . Recently several monotonicity results related to the image of smaller disks under f have been proved. These results extend the classical Schwarz lemma in various ways. We prove analogous monotonicity results in the context of Julia’s boundary Schwarz lemma. A horodisk is a disk internally tangent to the unit circle. For positive ${\lambda}$ , we denote by ${H_{\lambda}}$ the disk of radius ${\lambda/(1\,+\,\lambda)}$ centered at the point ${1/(1\,+\,\lambda)}$ . This is a horodisk that touches the unit circle at the point 1. Suppose that f(1) = 1 (in the sense of radial limit) and denote by ${f^{\prime}(1)}$ the angular derivative. By Julia’s lemma ${f(H_{\lambda})\,\subset H_{{\lambda}f^{\prime}(1)}}$ . Let ${\Psi_f(\lambda)\,=\,\inf\,\{\rho > 0 : f(H_{\lambda}) \subset H_\rho\}}$ . We show that the function ${\Psi_f(\lambda)/\lambda}$ is a decreasing function of ${\lambda}$ and that ${\lim_{\lambda\,\to\,0+} \Psi_f(\lambda)/\lambda = f^\prime(1)}$ . This result implies that the constant ${f^\prime(1)}$ in Julia’s lemma is the best possible.  相似文献   

6.
Let ${\mathbf{{f}}}$ be a $p$ -ordinary Hida family of tame level $N$ , and let $K$ be an imaginary quadratic field satisfying the Heegner hypothesis relative to $N$ . By taking a compatible sequence of twisted Kummer images of CM points over the tower of modular curves of level $\Gamma _0(N)\cap \Gamma _1(p^s)$ , Howard has constructed a canonical class $\mathfrak{Z }$ in the cohomology of a self-dual twist of the big Galois representation associated to ${\mathbf{{f}}}$ . If a $p$ -ordinary eigenform $f$ on $\Gamma _0(N)$ of weight $k>2$ is the specialization of ${\mathbf{{f}}}$ at $\nu $ , one thus obtains from $\mathfrak{Z }_{\nu }$ a higher weight generalization of the Kummer images of Heegner points. In this paper we relate the classes $\mathfrak{Z }_{\nu }$ to the étale Abel-Jacobi images of Heegner cycles when $p$ splits in $K$ .  相似文献   

7.
8.
Let $V$ be a symplectic vector space of dimension $2n$ . Given a partition $\lambda $ with at most $n$ parts, there is an associated irreducible representation $\mathbf{{S}}_{[\lambda ]}(V)$ of $\mathbf{{Sp}}(V)$ . This representation admits a resolution by a natural complex $L^{\lambda }_{\bullet }$ , which we call the Littlewood complex, whose terms are restrictions of representations of $\mathbf{{GL}}(V)$ . When $\lambda $ has more than $n$ parts, the representation $\mathbf{{S}}_{[\lambda ]}(V)$ is not defined, but the Littlewood complex $L^{\lambda }_{\bullet }$ still makes sense. The purpose of this paper is to compute its homology. We find that either $L^{\lambda }_{\bullet }$ is acyclic or it has a unique nonzero homology group, which forms an irreducible representation of $\mathbf{{Sp}}(V)$ . The nonzero homology group, if it exists, can be computed by a rule reminiscent of that occurring in the Borel–Weil–Bott theorem. This result can be interpreted as the computation of the “derived specialization” of irreducible representations of $\mathbf{{Sp}}(\infty )$ and as such categorifies earlier results of Koike–Terada on universal character rings. We prove analogous results for orthogonal and general linear groups. Along the way, we will see two topics from commutative algebra: the minimal free resolutions of determinantal ideals and Koszul homology.  相似文献   

9.
10.
11.
12.
We establish smoothness of the density of states for 1D lattice Schrödinger operators with potential taking values ${\pm\lambda}$ , for ${\lambda}$ in a class of small algebraic numbers and energy ${E \in\,) -2, 2(}$ suitably restricted away from ${\pm2}$ .  相似文献   

13.
Let $k$ and $j$ be positive integers. We prove that the action of the two-dimensional singular integral operators $(S_\Omega )^{j-1}$ and $(S_\Omega ^*)^{j-1}$ on a Hilbert base for the Bergman space $\mathcal{A }^2(\Omega )$ and anti-Bergman space $\mathcal{A }^2_{-1}(\Omega ),$ respectively, gives Hilbert bases $\{ \psi _{\pm j , k } \}_{ k }$ for the true poly-Bergman spaces $\mathcal{A }_{(\pm j)}^2(\Omega ),$ where $S_\Omega $ denotes the compression of the Beurling transform to the Lebesgue space $L^2(\Omega , dA).$ The functions $\psi _{\pm j,k}$ will be explicitly represented in terms of the $(2,1)$ -hypergeometric polynomials as well as by formulas of Rodrigues type. We prove explicit representations for the true poly-Bergman kernels and more transparent representations for the poly-Bergman kernels of $\Omega $ . We establish Rodrigues type formulas for the poly-Bergman kernels of $\mathbb{D }$ .  相似文献   

14.
Let $\mathcal P _\lambda $ be a homogeneous Poisson point process of rate $\lambda $ in the Clifford torus $T^2\subset \mathbb E ^4$ . Let $(f_0, f_1, f_2, f_3)$ be the $f$ -vector of conv $\,\mathcal P _\lambda $ and let $\bar{v}$ be the mean valence of a vertex of the convex hull. Asymptotic expressions for $\mathsf E \, f_1$ , $\mathsf E \, f_2$ , $\mathsf E \, f_3$ and $\mathsf E \, \bar{v}$ as $\lambda \rightarrow \infty $ are proved in this paper.  相似文献   

15.
Let $G$ be a complex affine algebraic reductive group, and let $K\,\subset \, G$ be a maximal compact subgroup. Fix h $\,:=\,(h_{1}\,,\ldots \,,h_{m})\,\in \, K^{m}$ . For $n\, \ge \, 0$ , let $\mathsf X _{\mathbf{{h}},n}^{G}$ (respectively, $\mathsf X _{\mathbf{{h}},n}^{K}$ ) be the space of equivalence classes of representations of the free group on $m+n$ generators in $G$ (respectively, $K$ ) such that for each $1\le i\le m$ , the image of the $i$ -th free generator is conjugate to $h_{i}$ . These spaces are parabolic analogues of character varieties of free groups. We prove that $\mathsf X _{\mathbf{{h}},n}^{K}$ is a strong deformation retraction of $\mathsf X _{\mathbf{{h}},n}^{G}$ . In particular, $\mathsf X _{\mathbf{{h}},n}^{G}$ and $\mathsf X _{\mathbf{{h}},n}^{K}$ are homotopy equivalent. We also describe explicit examples relating $\mathsf X _{\mathbf{{h}},n}^{G}$ to relative character varieties.  相似文献   

16.
We present explicit constructions of centrally symmetric $2$ -neighborly $d$ -dimensional polytopes with about $3^{d/2}\approx (1.73)^d$ vertices and of centrally symmetric $k$ -neighborly $d$ -polytopes with about $2^{{3d}/{20k^2 2^k}}$ vertices. Using this result, we construct for a fixed $k\ge 2$ and arbitrarily large $d$ and $N$ , a centrally symmetric $d$ -polytope with $N$ vertices that has at least $\left( 1-k^2\cdot (\gamma _k)^d\right) \genfrac(){0.0pt}{}{N}{k}$ faces of dimension $k-1$ , where $\gamma _2=1/\sqrt{3}\approx 0.58$ and $\gamma _k = 2^{-3/{20k^2 2^k}}$ for $k\ge 3$ . Another application is a construction of a set of $3^{\lfloor d/2 -1\rfloor }-1$ points in $\mathbb R ^d$ every two of which are strictly antipodal as well as a construction of an $n$ -point set (for an arbitrarily large $n$ ) in $\mathbb R ^d$ with many pairs of strictly antipodal points. The two latter results significantly improve the previous bounds by Talata, and Makai and Martini, respectively.  相似文献   

17.
Let X be an ANR (absolute neighborhood retract), ${\Lambda}$ a k-dimensional topological manifold with topological orientation ${\eta}$ , and ${f : D \rightarrow X}$ a locally compact map, where D is an open subset of ${X \times \Lambda}$ . We define Fix(f) as the set of points ${{(x, \lambda) \in D}}$ such that ${x = f(x, \lambda)}$ . For an open pair (U, V) in ${X \times \Lambda}$ such that ${{\rm Fix}(f) \cap U \backslash V}$ is compact we construct a homomorphism ${\Sigma_{(f,U,V)} : H^{k}(U, V ) \rightarrow R}$ in the singular cohomologies H* over a ring-with-unit R, in such a way that the properties of Solvability, Excision and Naturality, Homotopy Invariance, Additivity, Multiplicativity, Normalization, Orientation Invariance, Commutativity, Contraction, Topological Invariance, and Ring Naturality hold. In the case of a ${C^{\infty}}$ -manifold ${\Lambda}$ , these properties uniquely determine ${\Sigma}$ . By passing to the direct limit of ${\Sigma_{(f,U,V)}}$ with respect to the pairs (U, V) such that ${K = {\rm Fix}(f) \cap U \backslash V}$ , we define a homomorphism ${\sigma_{(f,K)} : {H}_{k}({\rm Fix}(f), Fix(f) \backslash K) \rightarrow R}$ in the ?ech cohomologies. Properties of ${\Sigma}$ and ${\sigma}$ are equivalent each to the other. We indicate how the homomorphisms generalize the fixed point index.  相似文献   

18.
We study cohomological induction for a pair $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ , $ \mathfrak{g} $ being an infinitedimensional locally reductive Lie algebra and $ \mathfrak{k} \subset \mathfrak{g} $ being of the form $ \mathfrak{k}_{0} \subset C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ , where $ \mathfrak{k}_{0} \subset \mathfrak{g} $ is a finite-dimensional reductive in $ \mathfrak{g} $ subalgebra and $ C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ is the centralizer of $ \mathfrak{k}_{0} $ in $ \mathfrak{g} $ . We prove a general nonvanishing and $ \mathfrak{k} $ -finiteness theorem for the output. This yields, in particular, simple $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ -modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when $ \mathfrak{g} $ is a root-reductive or diagonal locally simple Lie algebra.  相似文献   

19.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

20.
Let Σ be a non compact Riemann surface and ${\gamma :\Sigma \longrightarrow \Sigma}$ an automorphism acting freely and properly such that the quotient M = Σ/γ is a non compact Riemann surface. Using the fact that Σ and M are Stein manifolds, we prove that, for any holomorphic function ${g : \Sigma \longrightarrow {\mathbb C}}$ and any ${\lambda \in {\mathbb C}}$ , there exists a holomorphic function ${f:\Sigma \longrightarrow {\mathbb C}}$ which is a solution of the holomorphic cohomological equation ${f \circ \gamma - \lambda f = g}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号