首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用浸渍法制备了Ir/CeO2催化剂,考察了催化剂的CO氧化活性。随着Ir负载量的增加,Ir/CeO2催化剂的CO氧化活性先上升后下降,当Ir的负载量为1%时,催化剂的活性最高。Ir/CeO2催化剂中Ir以IrO2的形式存在,当低负载量(≤1%)时以高分散形式存在;高负载量(>1%)时以晶相IrO2的形式存在。随着Ir负载量增加,Ir粒子逐渐变大,反应比速率和反应转换频率(TOF)逐渐下降,表明小粒子上具有更高的CO反应活性。同时也发现金属态Ir催化剂的CO氧化活性高于氧化态IrOx催化剂。  相似文献   

2.
Surface and catalytic properties of Cu/Zn mixed oxide catalysts   总被引:1,自引:0,他引:1  
Copper catalysts supported on zinc oxide, with different loading (1–20 wt.% CuO), were prepared by impregnation of the basic zinc carbonate with a water solution of copper nitrate. The impregnated samples were dried at 120°C and calcined at 400–700°C. The surface and catalytic properties of CuO loaded on ZnO were determined by N2 adsorption measurements conducted at −196°C and CO oxidation by O2 at 150–300°C, respectively. The results obtained revealed that the surface and catalytic properties of different solids were dependent upon CuO content and calcination temperature. The specific surface areas of various adsorbents decreased monotonically as a function of both calcination temperature and extent of loading. However, the activation energy of sintering, ΔES, was found to increase by increasing the amount of CuO present. On the other hand, the CO oxidation activity on various catalysts was found to increase progressively by increasing the calcination temperature from 400 to 500°C, then decreased by increasing the temperature from 500 to 700°C. The augmentation of CuO content from 1 to 5 wt.% resulted in an increase in the CO oxidation activity, which decreased by increasing the extent of loading above this limit.  相似文献   

3.
The reasons for changes in catalytic activity as a function of the time of mechanochemical activation in a planetary mill were studied with the use of a set of physicochemical techniques. The dependence of the specific rate of CO oxidation on the time of mechanochemical activation exhibited an extremal character. Small-angle interblock boundaries, disordered dislocations, and shear defects were formed in the sample with maximum activity because of mechanochemical activation. The linear dependence of the specific rate of CO oxidation on the value of microstresses suggested that the above defects were responsible for an increase in the catalytic activity. It is likely that oxygen atoms situated at the sites of the outcrop of defects on the surface served as elementary active centers.  相似文献   

4.
Catalytic activity of binary and multicomponent semiconductors of the ZnSe-CdTe system prepared in a form of powders and nanofilms in CO oxidation was studied by pulsed flow and circulation flow methods. The conditions of maximal CO conversion were determined from the results of investigation of individual and joint adsorption of the reactants in a broad temperature range, and the specific activity of the catalysts was determined by the specific reaction rate at the specified temperature and composition of the reaction mixture. A noticeable catalytic transformation of CO on the semiconductors under study (up to 78.5%) was noted as low as room temperature. It was concluded that the oxidation of CO and adsorption of the CO + O2 mixture proceeds mainly by the collisional mechanism. It was noted that the high activity of studied catalysts already at room temperature (the (ZnSe)0.05(CdTe)0.95 solid solution possessed the highest activity) and the absence of high-cost metals in their composition allow us to recommend them as low-temperature, relatively low-cost catalysts for the neutralization of CO (carbon monoxide).  相似文献   

5.
孙科举 《催化学报》2016,(10):1608-1618
近年来,纳米金催化剂独特的催化性质,特别是其优异的低温催化氧化活性,引起了人们极大的研究热情.除低温选择氧化外,在精细化学品合成、大气污染物消除、氢能的转换和利用等领域也开发出了一系列有广泛应用前景的金催化反应.此外,体相金的化学惰性和纳米金的超高活性之间差异的“鸿沟”也引起了理论工作者浓厚兴趣,试图从原理上理解体相金和纳米金活性差异的根源. CO催化氧化是最具有代表性的研究金催化活性的化学反应,本文主要综述了近十多年来金催化 CO氧化反应理论计算方面的研究工作.一般认为, CO在纳米金表面的吸附是 CO氧化反应的初始步骤.密度泛函理论研究表明, CO在金表面的吸附强度主要与被吸附金原子的配位数有关:金配位数越低, CO的吸附能越强,部分研究结果表明两者之间存在近似的线性关系.我们研究发现, CO吸附强度也与被吸附金周围配位金原子的相对位置有关,其中位于正下方的配位金原子加强 CO吸附,而位于侧位的配位金原子则弱化 CO吸附,这显然削弱了 CO吸附与金配位数线性关系的可靠性.理论研究表明,在纯金表
  面上 O2吸附强度一般很弱,只有在一些特殊结构的金团簇上才有较强的吸附,但在 Au/TiO2界面及 CeO2表面上 O2吸附较强.金表面原子氧的吸附和金的表面结构有关.我们发现,原子氧倾向于在金的表面形成一种线性的 O–Au–O结构以增加其稳定性.当金表面的氧覆盖度增大时,会形成一种金氧化物薄膜结构,其结构依赖于氧的化学势和金的表面结构.纳米金催化 CO氧化反应机理可能因体系、载体等的差异而不同.大部分理论计算结果表明,在纯金表面上 O2很难直接解离形成原子氧,因此反应机理可能是吸附的 CO先与 O2反应形成了一种 CO–O2中间体,然后解离形成 CO2.在 Au/TiO2和 Au/CeO2催化剂上 CO催化氧化机理争议很大,均有计算结果支持 LH机理和 M–vK机理.另外,根据实验上观察到了负载型纳米金能直接活化分子氧的结果,理论上也提出了分子氧先解离为原子氧再与 CO反应的氧解离机理.针对如何解离分子氧问题,人们分别提出了低配位金模型、正方形金结构模型、Ti5c模型及 Au/Ti5c模型等.我们也提出了一种独特的双直线 O–Au–O模型来理解 Au/TiO2或 Au/CeO2界面解离活化分子氧.理论计算结果表明,低配位的金,金和载体之间的电荷转移,以及金所表现出的强相对论效应对于纳米金的活性影响很大.需要特别指出的是,金的强相对论效应有助于理解金表面的 CO吸附与金配位的关系、金表面原子氧的吸附特性、金氧化物薄膜的结构和分子氧的活化等过程.我们认为,金的强相对论作用导致了体相金的化学惰性以及纳米金的活性,因此相对论效应的深入研究将有助于理解金催化 CO氧化反应机理,从而有助于深层次理解纳米金催化活性来源.  相似文献   

6.
The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were characterized by means of the powder X-ray diffraction and N2 adsorption-desorption, the inductively coupled plasma atomic emission spectrometry, the temperature programmed reduction, diffuse reflectance UV-Vis spectra, and the X-ray photoelectron spectroscopy. It was found that after doping little amount of Ce in copper manganese oxide, CeO2 phase was highly dispersed and could prevent sintering and aggregating of the catalyst, the size of the catalytic material was decreased, the reducibility was enhanced, the specific surface area was increased and the formation of the active sites for the oxidation of CO was improved significantly. Therefore, the activity of the rare earth promoted catalyst was enhanced remarkably.  相似文献   

7.
Effect of the calcination temperature of the MnOx/Ga2O3 system on its structural and catalytic properties in the reaction of oxidation of CO and hydrocarbons. The dependences of the catalytic activity of MnO x /Ga2O3 in the reactions of CO and ethane oxidation on the calcination temperature exhibit an extremal behavior. The maximum values of activity are observed upon calcination of the system at 700°C, i.e., at the temperature that is limiting for the existence of a solid solution of manganese ions in γ-Ga2O3. The structural changes occurring with increasing calcination temperature are accompanied by a substantial decrease in the specific surface area of a sample. The observed rise in the specific catalytic activity (by a factor of ~7 upon an increase in the preliminary-calcination temperature from 600 to 800°C) confirms that the thermal activation effect exists for the given system.  相似文献   

8.
This article reviews our works on the structured catalysts for a wall-type hydrogen production system including methanol steam reforming (MSR), CO shift reaction (CO SR) and methanol decomposition (MD). The structured catalysts were copper-based, palladium-based and nickel-based catalysts. Such a series of structured catalysts were prepared by the electroless plating technique that is a novel method for preparing a structured type catalyst onto a metal-substrate. The copper-based catalyst exhibited high performance for MSR and CO SR, the palladium-based catalyst high for MSR, and the nickel-based catalyst high for MD. The catalytic properties of these catalysts were affected by the difference of the plating condition and the pretreatment condition prior to the reaction. In the copper-based catalyst, the reforming and shift activities were enhanced by the oxidation treatment. One of the factors of such activity enhancement by the oxidation was thought to be in close proximity existence of copper and zinc atoms. A lot of monodentate-type formate species having high reactivity was formed on the oxidized catalyst, which would be correlated to the activity enhancement. In the palladium-based catalyst, the reforming activity was improved by the continuous reduction treatment followed by the oxidation. Such continuous pretreatment formed the PdZn alloy species thought to be a reforming site in the surface layer. The decomposition performance of the nickel-based catalyst depended on the ratio of the crystallite size of nickel particles to that of aluminum particles. The electronic influence of zinc and phosphorous components incorporated in the plated layer contributed to the improvement of the selectivity of product.  相似文献   

9.
李威  杜林颖  贾春江  司锐 《催化学报》2016,(10):1702-1711
氧化物负载的纳米金催化剂对CO氧化反应具有极高的活性,这不仅依赖于金的结构特性,也取决于氧化物载体的结构.近年来,除了氧化硅、氧化铝等惰性载体以及氧化钛、氧化铈、氧化铁等可还原性载体外,人们还致力于探索各类新型氧化物载体.另一方面,锡酸锌是具有反尖晶石结构的化合物,并且在透明导电氧化物、锂离子电池阳极材料、光电转换装置以及传感器等方面应用广泛.然而,迄今为止,锡酸锌仍未被用于负载纳米金催化剂,因此相关的构效关系作用研究也十分有限.基于此,本文采用氮气吸附-脱附实验、电感耦合等离子体原子发射光谱(ICP-AES)、X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和高分辨电镜(HRTEM)、高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)、X射线吸收精细结构谱(XAFS)和氢气程序升温脱附(H2-TPD)等手段,系统研究了锡酸锌负载的纳米金催化剂在CO氧化反应中催化性能差异的原因.首先,利用水热法制备了锡酸锌(ZTO)载体,而其织构性质可由碱(N2H4·H2O)与金属离子(Zn2+)的比例在4/1(ZTO_1)、8/1(ZTO_2)和16/1(ZTO_3)之间进行调节.结果发现, ZTO_2具有最大的孔体积(0.223 cm3/g)和最窄的孔径分布.再采用沉积沉淀法将0.7 wt% Au负载于其上,得到金-锡酸锌(Au_ZTO)催化剂. ICP-AES测得样品中Au含量在0.57-0.59 wt%,与投料比接近. CO氧化反应结果显示, Au_ZTO_1和Au_ZTO_2的表观活化能相同,但后者的活性更高;而Au_ZTO_3在220°C以下没有活性,催化性能最差,与纯锡酸锌载体相当. XRD结果显示,反应过程中ZTO晶相、晶胞参数及晶粒尺寸变化不明显; TEM和HRTEM分析表明,载体ZTO在反应前后均为多面体形貌,平均颗粒尺寸在12-16 nm; XPS结果验证了Zn2+和Sn4+离子是新鲜和反应后样品中载体金属的存在形式; HAADF-STEM探测到所有样品中均含有1-2 nm的Au粒子; XAFS结果表明, Au以Au0形式存在,并且在Au_ZTO_3中Au平均粒径大于4 nm,而其它两样品约为2 nm. H2-TPR结果表明,金的引入对ZTO载体耗氢量影响不大,但还原峰温度向低温移动;金属-载体相互作用强弱与催化活性高低具有正相关性,即Au_ZTO_2> Au_ZTO_1>> Au_ZTO_3.这是由于不同织构性质的锡酸锌载体对于纳米金活性物种的稳定作用不同所致,具有最大孔体积和最窄孔径分布的ZTO_2负载的金纳米颗粒表现出最高活性.  相似文献   

10.
ZrO2改性对Pt/Al2O3催化剂上CO氧化性能的影响   总被引:8,自引:1,他引:8  
用流动反应法、TPR和TPD-MS等技术研究了Pt/Al2O3催化剂掺杂ZrO2体系上CO的催化氧化反应、氧物种的还原及脱出-恢复行为.结果表明,掺杂ZrO2有利于催化剂上氧物种的脱出-恢复,从而促进CO氧化活性及表面活泼氧物种与氢的反应.并用催化剂集团结构适应理论对结果作出了解释.  相似文献   

11.
黏结剂对铁酸锌脱硫剂在高温煤气中脱硫性能的影响   总被引:3,自引:1,他引:2  
以硝酸铁、硝酸锌、氨水及黏结剂为主要原料,用共沉淀法制成六种铁酸锌脱硫剂。研究了各种黏结剂的加入对脱硫剂的尖晶石结构、硫容量和脱硫效果的影响,在固定床上对其进行脱硫试验。并用X射线衍射(XRD)、扫描电子显微镜(SEM)和气体吸附等测试手段,对脱硫剂的物相组成、结构、比表面积和孔容进行了表征。结果表明,用共沉淀法制备的铁酸锌,具有不受黏结剂影响的尖晶石结构,其颗粒属于微米级;添加高岭土黏结剂的脱硫剂的脱硫效果最好,添加硅藻土的脱硫剂的脱硫效果最差;不同黏结剂对脱硫剂的织构的影响不同;脱硫剂的反应活性和硫容量与其孔容的大小有关。  相似文献   

12.
Specimens of tin dioxide with modifying Sb and Pt additives are synthesized. Their physicochemical properties (specific surface area, porosity, and conductivity), chemisorption and catalytic activity in the model reaction of CO oxidation are studied. A considerable chemisorption of CO on SnO2 and SnO2-SbO x is observed at 150–180°C. The oxidation of CO in the flow of gases starts in the same temperature range. An addition of platinum leads to a significant increase in the rate of CO oxidation, the reaction starts at 80°C. It is proposed that the process proceeds at the SnO2/Pt interface.  相似文献   

13.
利用沉积沉淀法制备了Pt/TiO2催化剂, 将其在不同温度下焙烧, 以得到不同颗粒尺寸的Pt. 并将这些样品用于CO催化氧化反应以及反应动力学研究. 结果表明: 焙烧温度对催化剂有明显影响, Pt 颗粒尺寸随着焙烧温度的升高而增加; 与此同时, CO催化活性随焙烧温度的升高呈先增加后降低的趋势, 其中, 400℃焙烧的样品表现出最高的催化活性. 反应动力学结果表明, 催化剂上CO氧化反应表观速率方程为r=5.4×10-7pCO0.17pO20.36,说明在该催化剂上CO氧化遵循Langmuir-Hinshelwood机理. 同时, 对催化剂进行了CO化学吸附红外光谱和O2化学吸附表征. 结果表明, 随着焙烧温度的升高, 催化剂上CO和O2吸附量均呈现先升高后降低的趋势, 这与反应结果和反应动力学方程一致, 说明反应受到催化剂表面上CO和O2吸附浓度的影响. 而在400℃焙烧的催化剂上, CO和O2吸附量均最高, 因此其反应活性也最好. 这可能是焙烧过程影响了Pt 和TiO2之间的相互作用引起的.  相似文献   

14.
Copper doped ceria porous nanostructures with a tunable BET surface area were prepared using an efficient and general metal–organic-framework-driven, self-template route. The XRD, SEM and TEM results indicate that Cu2+ was successfully substituted into the CeO2 lattice and well dispersed in the CeO2:Cu2+ nanocrystals. The CeO2:Cu2+ nanocrystals exhibit a superior bifunctional catalytic performance for CO oxidation and selective catalytic reduction of NO. Interestingly, CO oxidation reactivity over the CeO2:Cu2+ nanocrystals was found to be dependent on the Cu2+ dopants and BET surface area. By tuning the content of Cu2+ and BET surface area through choosing different organic ligands, the 100% conversion temperature of CO over CeO2:Cu2+ nanocrystals obtained from thermolysis of CeCu–BPDC nanocrystals can be decreased to 110 °C. The porous nanomaterials show a high CO conversion rate without any loss in activity even after five cycles. Furthermore, the activity of the catalysts for NO reduction increased with the increase of BET surface, which is in accordance with the results of CO oxidation.  相似文献   

15.
The reactivity of two classes of ruthenium nanoparticles (Ru NPs) of small size, either sterically stabilized by a polymer (polyvinylpyrrolidone, PVP) or electronically stabilized by a ligand (bisdiphenylphosphinobutane, dppb) was tested towards standard reactions, namely CO oxidation, CO2 reduction and styrene hydrogenation. The aim of the work was to identify the sites of reactivity on the nanoparticles and to study how the presence of ancillary ligands can influence the course of these catalytic reactions by using NMR and IR spectroscopies. It was found that CO oxidation proceeds at room temperature (RT) on Ru NPs but that the system deactivates rapidly in the absence of ligands because of the formation of RuO2. In the presence of ligands, the reaction involves exclusively the bridging CO groups and no bulk oxidation is observed at RT under catalytic conditions. The reverse reaction, CO2 reduction, is achieved at 120 °C in the presence of H2 and leads to CO, which coordinates exclusively in a bridging mode, hence evidencing the competition between hydrides and CO for coordination on Ru NPs. The effect of ligands localized on the surface is also evidenced in catalytic reactions. Thus, styrene is slowly hydrogenated at RT by the two systems Ru/PVP and Ru/dppb, first into ethylbenzene and then into ethylcyclohexane. Selectively poisoning the nanoparticles with bridging CO groups leads to catalysts that are only able to reduce the vinyl group of styrene whereas a full poisoning with both terminal and bridging CO groups leads to inactive catalysts. These results are interpreted in terms of location of the ligands on the particles surface, and evidence site selectivity for both CO oxidation and arene hydrogenation.  相似文献   

16.
Nanodimensional powders of cubic copper ferrite are synthesized by two-steps procedure of co-precipitation of copper and iron hydroxide carbonates, followed by mechanochemical treatment. X-ray powder diffraction, Mössbauer spectroscopy and temperature-programmed reduction are used for the characterization of the obtained materials. Their catalytic behavior is tested in methanol decomposition to hydrogen and CO and total oxidation of toluene. Formation of nanosized ferrite material is registered even after one hour of milling time. It is established that the prolonging of treatment procedure decreases the dispersion of the obtained product with the appearance of Fe2O3. It is demonstrated that the catalytic behavior of the samples depends not only on their initial phase composition, but on the concomitant ferrite phase transformations by the influence of the reaction medium.  相似文献   

17.
TiO2- and gamma-Al2O3-supported Pt catalysts were characterized by HRTEM, XPS, EXAFS, and in situ FTIR spectroscopy after activation at various conditions, and their catalytic properties were examined for the oxidation of CO in the absence and presence of H2 (PROX). When gamma-Al2O3 was used as the support, the catalytic, electronic, and structural properties of the Pt particles formed were not affected substantially by the pretreatment conditions. In contrast, the surface properties and catalytic activity of Pt/TiO2 were strongly influenced by the pretreatment conditions. In this case, an increase in the reduction temperature led to higher electron density on Pt, altering its chemisorptive properties, weakening the Pt-CO bonds, and increasing its activity for the oxidation of CO. The in situ FTIR data suggest that both the terminal and bridging CO species adsorbed on fully reduced Pt are active for this reaction. The high activity of Pt/TiO2 for the oxidation of CO can also be attributed to the ability of TiO2 to provide or stabilize highly reactive oxygen species at the metal-support interface. However, such species appear to be more reactive toward H2 than CO. Consequently, Pt/TiO2 shows substantially lower selectivities toward CO oxidation under PROX conditions than Pt/gamma-Al2O3.  相似文献   

18.
In this work, we describe the effects of thermal treatments on the structural, morphological, and textural properties of nanocomposites formed by nickel ferrite dispersed in xerogel and aerogel silica matrices. The catalytic properties for the total oxidation of an organochloro model contaminant, the chlorobenzene, are also evaluated. Wet samples with different amounts of NiFe2O4 in matrix were prepared by sol–gel process. Xerogels and aerogels obtained in monolithic form were prepared by controlled and hypercritical drying, respectively, and heated at temperatures between 300 and 1,100°C. The specific surface area and total pore volume of the samples change with heating mainly due to the variation on their texture. The xerogel treated at 500°C and the aerogel treated at 700°C showed the most catalytic activity, converting chlorobenzene at temperatures as low as 150°C, while the other catalysts were active only at temperatures higher than 300°C. No organic by-products were observed in the oxidation of chlorobenzene, suggesting that total oxidation takes place under the reaction conditions. A strong decrease in catalytic activity was observed for nanocomposites treated at 1,100°C, due to matrix densification, which led to the encapsulation of the ferrite particles and hindered the access of the gas to the ferrite surface.  相似文献   

19.
The yields of products of methanol oxidation (HCHO, HCOOH, and CO(2)) were studied for carbon-supported PtRu nanoparticles having different amounts of alloyed and oxide phases. It is demonstrated that the increase in the Pt 5d-band vacancy enhances the production of CO(2), which is not directly related with the catalytic activity for CO oxidation. Results prove the relevant role of oxides and, at the same time, shed some new light on mechanistic aspects of methanol oxidation on PtRu nanocatalysts. It is also demonstrated that extrapolating from the behavior of smooth surfaces to nanoparticle systems is not always valid.  相似文献   

20.
Using high-resolution transmission electron microscopy (TEM), infrared reflection-absorption spectroscopy (IRAS), and electrochemical (EC) measurements, platinum nanoparticles ranging in size from 1 to 30 nm are characterized and their catalytic activity for CO electrooxidation is evaluated. TEM analysis reveals that Pt crystallites are not perfect cubooctahedrons, and that large particles have "rougher" surfaces than small particles, which have some fairly smooth (111) facets. The importance of "defect" sites for the catalytic properties of nanoparticles is probed in IRAS experiments by monitoring how the vibrational frequencies of atop CO (nu(CO)) as well as the concomitant development of dissolved CO(2) are affected by the number of defects on the Pt nanoparticles. It is found that defects play a significant role in CO "clustering"on nanoparticles, causing CO to decrease/increase in local coverage, which yields to anomalous redshift/blueshift nu(CO) frequency deviations from the normal Stark-tuning behavior. The observed deviations are accompanied by CO(2) production, which increases by increasing the number of defects on the nanoparticles, that is, 1 < or = 2 < 5 < 30 nm. We suggest that the catalytic activity for CO adlayer oxidation is predominantly influenced by the ability of the surface to dissociate water and to form OH(ad) on defect sites rather than by CO energetics. These results are complemented by chronoamperometric and rotating disk electrode (RDE) data. In contrast to CO stripping experiments, we found that in the backsweep of CO bulk oxidation, the activity increases with decreasing particle size, that is, with increasing oxophilicity of the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号