首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cyclophane-based resorcinarene tetramer, which is constructed with a tetraaza[6.1.6.1]paracyclophane and four resorcinarenes bearing hepta(carboxylic acid) residues that connect the macrocycle through amide linkages, was prepared. The binding constant of the cyclophane-based resorcinarene with immobilized histone was determined to be 1.3 × 107 M−1 by surface plasmon resonance measurements, which was 31-fold larger than that of the resorcinarene monomer bearing octacarboxylic acids. Moreover, the cyclophane-based tetra(resorcinarene) acted as a host toward hydrophobic molecular guests such as 6-p-toluidinonaphthalene-2-sulfonate.  相似文献   

2.
A cyclophane-based resorcinarene trimer (3) bearing a dansyl moiety as an environmentally sensitive fluorophore was prepared by stepwise condensation of a tetraaza[6.1.6.1]paracyclophane skeleton with a dansyl moiety and three resorcinarene derivatives having heptacarboxylic acid residues in this sequence. The dansyl-appended cyclophane exhibited the following fluorescence properties regarding solvent polarity dependency and histone surface recognition: With increasing dioxane contents in dioxane/water solvents, the fluorescence intensity originating from the dansyl moiety of 3 increased along with a concomitant blue shift of the fluorescence maximum (lambdaem). The microenvironmentally sensitive fluorescence properties of dansyl fluorophore were maintained, even when the dansyl moiety was covalently attached to a cyclophane. Most interestingly, the cyclophane-based resorcinarene trimer exhibited recognition and fluorescence sensing capabilities toward histone, a small basic protein of eukaryotic chromatins. The fluorescence intensity originating from 3 increased along with a concomitant blue shift of lambdaem upon the addition of histone, reflecting the formation of 3-histone complexes. A relatively large fluorescence polarization (P) value was obtained for the 3-histone complexes (0.15), reflecting highly restricted conformations of 3, and the obtained P value was much larger than that of 3 alone in aqueous medium (0.07). The binding constant (K) of 3 with histone (unit basis) was estimated to be 2.1 x 106 M-1. On the other hand, upon the addition of acetylated histone (Ac-histone) to an aqueous solution containing 3, the extent of change in fluorescence intensity originating from the dansyl group of 3 was almost negligible, indicating that the electrostatic interactions between 3 and Ac-histone were weak. In addition, the fluorescence spectral changes were also small or negligible upon the addition of other proteins such as albumin, ovalbumin, peanut agglutinin, myoglobin, concanavalin A, cytochrome c, and lysozyme, having isoelectric points of 4.7, 4.8, 5.7-6.7, 6.8, 7.1, 9, and 11.0, respectively, to an aqueous solution containing 3.  相似文献   

3.
Rotaxane-type receptors, which were composed of anionic cyclophane-based resorcinarene tetramers as the wheel and a 2,6-disubstituted naphthalene derivative having two fluorophore moieties, such as fluorescein and rhodamine residues, as the axle ( and , respectively), were prepared. Rotaxane-type receptors and bound histone, a small basic protein component of eukaryotic chromatins, with binding constants of 2.3 x 10(6) and 9.0 x 10(5) M(-1), respectively. The rotaxane-type receptors showed fluorescence sensing ability with remarkable histone selectivity. Moreover, fluorescence resonance energy transfer (FRET) between the fluorescein residues of and the rhodamine residues of took place in the presence of histone, which was a useful method for the detection of histone.  相似文献   

4.
A saccharide cyclophane bearing an environment-sensitive fluorophore (1) was prepared by introducing not only three branches with a terminal galactose residue but also one with a dansyl moiety into a tetraaza[6.1.6.1]paracyclophane skeleton. Self-association behavior of the dansyl-appended saccharide cyclophane was characterized in aqueous media by fluorescence spectroscopy and dynamic light scattering measurements. At least in the concentrations below 1.0 x 10(-5) M, saccharide cyclophane 1 existed in a monomeric state, whereas it tended to form self-aggregated complexes in the higher concentration. Solvent polarity dependency on the emission spectra of 1 was examined by fluorescence spectroscopy. With increasing dioxane contents in dioxane/water solvents, the fluorescence intensity originating from the dansyl moiety of 1 increased along with a concomitant blue shift of the fluorescence maximum (lambda(em)). In the monomeric state of 1 in water, the dansyl moiety of 1 was not fully included into its cyclophane cavity but partially exposed to the bulk aqueous phase. In the higher concentration ranges in an aggregate state, however, the dansyl group of 1 was located in the apolar cyclophane cavity whose microenvironment was equivalent to the polarity of 1-butanol evaluated on the basis of a correlation between lambda(em) and solvent polarity. This indicates an intermolecular inclusion of the dansyl moiety within the cyclophane. When cyclodextrin (CD) was mixed with 1, the dansyl group of 1 was bound to an internal cavity of CD such as gamma-CD, beta-CD, 6-O-alpha-glucosyl-beta-CD, and 6-O-alpha-maltosyl-beta-CD with binding constants of 7.5 x 10(2), 7.8 x 10(2), 7.7 x 10(2), and 6.0 x 10(2) M(-1), respectively. Such a supramolecular assembling of dansyl-modified cyclophane 1 and CDs caused changes of the fluorescence spectra as well as appearance of induced CD bands in aqueous media. Furthermore, saccharide cyclophane 1 was selectively bound to peanut agglutinin (PNA), galactoside-binding lectin, which was readily monitored by a visible turbidity of the solution due to a cross-linking agglutination of these components, as well as by fluorescence spectroscopy.  相似文献   

5.
Steroid cyclophanes, bearing four bile acid moieties covalently placed on a tetraazaparacyclophane skeleton, were designed and synthesized as artificial cell-surface receptors. Guest-binding behavior of the steroid cyclophanes embedded in a bilayer membrane formed with a synthetic peptide lipid was clarified by means of fluorescence and circular dichroism spectroscopy. We found that the steroid cyclophane effectively bound aromatic guests in both bilayer membranes and aqueous solution. In addition, copper(II) ions acted as a guest species for the steroid cyclophane and a competitive inhibitor toward a NADH-dependent lactate dehydrogenase (LDH). On these grounds, we constituted a supramolecular assembly as an artificial signaling system in combination with the steroid cyclophane, a cationic peptide lipid, and LDH. As a consequence, the steroid cyclophane acted as an effective artificial cell-surface receptor being capable of transmitting an external signal to the enzyme in collaboration with copper(II) ions as a signal transmitter.  相似文献   

6.
Two novel closed-shell hemicarcerand-like hosts with spherical cavities of 11 A diameter that are soluble in aqueous solution were constructed. The binding of xylenes, aryl ethers, polyaromatic compounds, ferrocene derivatives, and bicyclic aliphatic compounds were examined by NMR spectroscopy and microcalorimetry. NMR binding studies indicated that binding depended upon guest hydrophobicity and shape. No binding was detected for guests in which a charge must be desolvated as part of inclusion or for guests that can not fit within the cavity of the host. Three complexes 2.naphthalene, 2.p-xylene, and 2.ferrocene were isolated and found to be indefinitely stable in the solid phase and in aqueous solution. The binding constants for these complexes are estimated to be greater than 10(8) M-1. Thirteen guests were examined by microcalorimetry with binding constants ranging between 10(7) and 10(3) M-1. A comparison of results obtained here with those from previous work with beta-cyclodextrin and cyclophane hosts, along with analysis of the entropy-enthalpy compensation data, indicate that there is a higher degree of guest desolvation with this host structure than with open-shell hosts. This accounts at least partially for the increase in affinity observed with these closed-shell hosts. Replacing a hydroxy group in the host portal with a hydrogen atom does not affect the binding constant, a finding consistent with the guest residing deeply buried within the host cavity. It was observed that aromatic guests are bound with higher affinity than aliphatic ones in agreement with results that point to the importance of London dispersion forces in the association of aromatic components in face-to-edge orientations. The correlation of changes in NMR chemical shift with microcalorimetry data supports a model in which increased CH-pi interactions strengthen association between host and guest due to the dominant role of van der Waals dispersion forces. Remarkably, the binding constant for the 1,4 isomer of dimethoxybenzene is 32 times higher than for the 1,2 isomer, and even greater discrimination is observed between the xylene guests since the binding constant for p-xylene is 80 times greater than that for o-xylene. This discrimination between isomeric guests by a rigid host indicates that changes in specific hydrophobic interactions have substantial effects upon binding affinity.  相似文献   

7.
The inclusion behavior of the octopus cyclophane constructed with a rigid macrocyclic skeleton and eight hydrocarbon chains was studied in aqueous media by means of fluorescence and electronic absorption spectroscopy. Both hydrophobic and electrostatic interactions came into effect in the host-guest complexation process. The cyclophane acted as an effective apoenzyme model for constitution of an artificial vitamin B6-dependent holoenzyme by simultaneous incorporation of pyridoxal-5-phosphate and a hydrophobic alkylammonium substrate into the host cavity to give the Schiff-base species, showing the substrate selectivity.  相似文献   

8.
Host-[2]rotaxanes, containing a diarginine-derivatized dibenzo-24-crown-8 (DB24C8) ether as the ring and a cyclophane pocket or an aromatic cleft as one blocking group, are cell transport agents. These hosts strongly associate with a variety of amino acids, dipeptides, and fluorophores in water (1 mM phosphate buffer, pH 7.0), DMSO, and a 75/25 (v/v) buffer to DMSO solution. All peptidic guests in all solvent systems have association constants (K(A)'s) in the range of 1 x 10(4) to 5 x 10(4) M(-)(1), whereas the K(A) range for the fluorophores is 1 x 10(4) to 9 x 10(5) M(-)(1). Association constants for the cyclophane itself, cyclophane 3, are smaller. These values are in the 1 x 10(3) to 5 x 10(3) M(-)(1) range, which shows that the rotaxane architecture is advantageous for guest binding. Cyclophane-[2]rotaxane 1 efficiently transports fluorescein and a fluorescein-protein kinase C (PKC) inhibitor into eukaryotic COS-7 cells, including the nucleus. Interestingly, cleft-[2]rotaxane 2 does not transport fluorescein as efficiently, even though the results from the fluorescence assays show that both [2]rotaxanes bind fluorescein with the same ability.  相似文献   

9.
Water-soluble cyclophane heptadecamers (17a and 17b), which were constructed with the core cyclophane heptadecamer and 36 polar side chains with a terminal galactose or glucose residue, respectively, were prepared. An analogous cyclophane pentamer (5a) was also prepared. The stoichiometry for the complex of the cyclophane oligomers with fluorescence guests such as TNS was confirmed to be 1:1 host:guest by a Job plot. The guest-binding affinity of cyclophane heptadecamers 17a and 17b was much enhanced relative to that of a corresponding monocyclic cyclophane (1a), i.e., the 1:1 binding constant (K) values for 17a with TNS, 2,6-ANS, and 1,8-ANS were ca. 1700-, 1600-, and 1500-fold larger than those of 1a for the identical guests, respectively, which reflects the multivalency effects in macrocycles. Meanwhile, the corresponding K values for the cyclophane pentamer 5a with TNS, 2,6-ANS, and 1,8-ANS were ca. 250-, 250-, and 110-fold larger than those of 1a for the identical guest, respectively.  相似文献   

10.

As a special subset of calix[4]arene, calix[4]resorcinarene is an excellent molecular platform which could be modified by introducing functional groups to multiple sites at the upper and lower rims. There are mainly three ways to build functionalized calix[4]resorcinarene derivatives: (1) modification on the C-2 sites of calix[4]resorcinarenes; (2) modification on the phenolic hydroxyl groups of calix[4]resorcinarenes; (3) modification on the bridging methylenes at lower rim of calix[4]resorcinarenes. Functionalized calix[4]resorcinarene derivatives play an important role in the development of self-assembly chemistry, among which hydrogen bonding and metal coordination are the two most common interactions to obtain multicomponent structures. Moreover, due to the excellent topological structures and various active substituents of functionalized calix[4]resorcinarene derivatives, their applications in various fields, such as nanoparticles, catalysts, fluorescent materials, and sensors, have been briefly presented in this paper.

  相似文献   

11.
A conjugate composed of tetraaza[6.1.6.1]paracyclophane bearing carboxylic acids and lectin, a carbohydrate binding protein, was prepared. The specific saccharide-binding abilities as well as the secondary structural features of the lectin were not disturbed, when the cyclophane were covalently bound to the lectin. The conjugate was found to act as a water-soluble host for inclusion of anionic guest molecules such as 6-p-toluidino-naphthalene-2-sulfonate (TNS) and 8-anilinonaphthalene-1-sulfonate (ANS) in aqueous acetate buffer (pH 4.0) with binding constants of 4.2 × 104 and 1.5 × 104 dm3 mol−1, respectively. The obtained binding constants were much larger than those by untethered water-soluble cyclophane. A highly desolvated microenvironment was provided by the cyclophane cavity on the protein surfaces so that the tight host–guest interaction, which brought about the marked motional repression of the entrapped guests, became effective. The conjugate also showed molecular discrimination capabilities toward the anionic guests through electrostatic repulsion mechanism originating from acid-dissociation equilibrium of carboxylic acids of the cyclophane branches.  相似文献   

12.
The steroid cyclophanes with a cyclic core consisting of a 1,6,20,25-tetraaza[6.1.6.1]paracyclophane connected to four steroid moieties (cholic acid or cholanic acid) through a flexible l-lysine spacer were spread on water as Langmuir monolayers. The pi-A isotherm of the cholic-type steroid cyclophane includes a transition to the condensed phase with a limiting area of approximately 2 nm(2). This value is close to the cross-sectional area of the steroid cyclophane with a standing-up conformation of the cholic acid moieties, strongly suggesting that the cavity converts from a two-dimensional cavity to a three-dimensional cavity upon compressing the monolayer. Surface-reflective fluorescence spectroscopy of the monolayer using an aqueous fluorescent probe (6-(p-toluidino)naphthalene-2-sulfonate (TNS)) showed an abrupt increase in the TNS fluorescence intensity at a molecular area of 2 nm(2). Efficient binding of the guest probe would occur upon the completion of the three-dimensional cavity. Repeated compression and expansion induces periodic changes in the fluorescence intensity. This indicates a piezoluminescence effect through the catch and release of the TNS guest upon dynamic cavity formation. Analyses of the binding behavior of TNS to the steroid cyclophane resulted in binding constants in the range of approximately (5-9) x 10(4) M(-1) which are similar to that observed in lipid bilayer media (K = 5.1 x 10(4) M(-1)). The fluorescence intensity within the condensed phase was significantly increased with increasing pressure, suggesting that suppression of the molecular motion of the bound TNS may retard the nonemission process. Similar monolayer experiments were carried out with the monolayer of the cholanic-type steroid cyclophane that cannot form an open conformation on water. Both the phase transition in the pi-A isotherm and the change in the fluorescence intensity were negligible, confirming that the dynamic characteristic of the cavity is indispensable for the efficient pressure-induced binding of the guest and the consequent luminescence.  相似文献   

13.
Calixarenes (CAs) and calix[4]resorcinarenes are cavity compounds, chiral analogues of which have the potential to be used as reagents for the differentiation of enantiomers in NMR spectroscopy. The nature of the substituent groups attached to the cavity permits the preparation of organic- or water-soluble analogues. In NMR applications, chirality of the CAs or calix[4]resorcinarene is usually achieved through the attachment of enantiomerically pure substituent groups. The use of inherently chiral analogues for chiral differentiation is less common. The range of CAs and calix[4]resorcinarenes that have been used for chiral analysis in NMR spectroscopy is reviewed.  相似文献   

14.
Two amphiphilic water-soluble sulfonatomethylated calix[4]resorcinarene derivatives were studied by various 1H NMR techniques (1H NMR titration, 2D NOESY, NMR diffusion measurements). The derivative with methyl moieties at the lower rim (1) was found to be non-aggregated in the range 0–10 mM in aqueous solutions. Lengthening of the lower rim substituent to pentyl (2) results in self-aggregation of 2 in aqueous solutions with the aggregation number varying from 3 at 1 mM to 20 at 10 mM. The 2D NOESY 1H NMR spectroscopy data reveal an unusual head-to-tail packing mode in aqueous solutions, resulting from the cooperative effect of weak hydrophobic interactions. Binding of guests (tetramethylammonium and N-methylpyridinium) results in additional stabilization of the aggregates whilst the head-to-tail packing mode of the aggregate is retained.  相似文献   

15.
Fluorescence resonance energy transfer (FRET) was employed to monitor the dynamics of hydrogen-bonded hexameric assemblies formed from resorcin[4]arenes and pyrogallol[4]arenes. Studies were designed to provide further insights into the degree of assembly and stability of these self-assembled capsules at the micro- to nanomolar concentration ranges that are not accessible by NMR studies. The results of this investigation reveal factors that influence the self-assembly of these macrocycles into hexameric capsules. Pyrogallolarenes are very sensitive to the concentration of mixing, with an increase in the equilibration half-life from 36 min at 250 nM to 156 min at 10 microM. The resorcinarenes showed little difference in exchange rates over the same concentration range. The temperature of mixing of the macrocycles was found to be important for both systems with a 12-fold increase in exchange rates over a 20 degree range for the pyrogallolarenes and a 2-fold rate increase for the resorcinarenes over the same temperature range. The stability of the capsules to polar additives such as methanol was probed, with the pyrogallolarenes requiring a higher percentage (1.6% v/v in dichloromethane) of methanol to disassemble the capsules than the resorcinarenes (1.0% v/v in dichloromethane). Pyrogallolarenes assemble in both anhydrous and wet solvents whereas water-saturated solvents are necessary to facilitate the formation of resorcinarene capsules. In addition to these studies, evidence of strict self-sorting in the formation of distinct pyrogallolarene and resorcinarene hexamers was obtained.  相似文献   

16.
The first synthesis of a water-soluble cyclophane possessing a chiral hydrophobic cavity, and the formation of diastereomeric inclusion complexes with chiral hydrophobic guests in water are described.  相似文献   

17.
Guest‐binding affinities of water‐soluble cyclophane heptadecamer (1) and pentamer (2) with immobilized guests such as 1‐pyrenylmethylamine (PMA) and 2‐(1‐ naphthyl)ethylamine (NEA) were investigated by surface plasmon resonance (SPR) measurements. As a typical example, the binding constants (K) for 1 and 2 with the immobilized PMA as a guest were evaluated to be 2.5 × 107 and 2.7 × 106 M?1, respectively, and were much larger than that of a monocyclic reference cyclophane (K, 2.5 × 104 M?1). Interestingly, in the complexation of 1 and 2 with the immobilized guests, more favorable association and dissociation rate constant values (ka and kd, respectively) were observed in comparison with those for the monocyclic cyclophane, reflecting multivalent effects in macrocycles. The multivalent effects in macrocycles as well as molecular recognition abilities of the cyclophane oligomers were confirmed even when the guest molecules were immobilized on SPR sensor chip surfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Reaction of resorcinarene octols with tris-hydroxymethylmethylamine (TRIS), formaldehyde, and alcohols results in tetraalkoxymethylation of the resorcinol rings. Harsh acylation of aminomethylated resorcinarenes with acid anhydrides leads to the complete acylation of eight hydroxyls and substitution of the amino versus acyloxy groups. Acyloxymethylated resorcinarene 6b can be transformed into a tetrabromomethylated derivative 7 through the reaction with HBr in acetic acid.  相似文献   

19.
Calix[4]resorcinarenes serve as host molecules for small guest molecules. Recently calixarenes have been appended to chiral molecules in an attempt to promote chiral recognition. To take advantage of both cavity host and chiral substituent properties the position of the chiral moiety is important. We report the synthesis and structural characterization of two calix[4]resorcinarene based molecules that have helical chirality in the solid state. The calix[4]resorcinarene 1 has chiral l-proline ethyl ester substituents positioned perpendicular to the cavity whereas the calix[4]resorcinarene 2 has morpholines positioned parallel to the cavity which extend the depth of the cavity. Compound 1 is one of the first compounds to show the position of chiral centers with respect to the calixarene cavity. 1H and 13C NMR spectroscopy indicate that the helical chirality of 2 is retained at low temperature in nonpolar solvents.  相似文献   

20.
Solubilization of calix [4]resorcinarenes (Cn) with a varied length of hydrophobic substituents (R =Me, Pr, C5H11, C7H15, C9H19, and C11H23) in aqueous solutions of oxyethylated dodecanol Brij-35 was studied by the solubility method and 1D and 2D 1H NMR spectroscopy. The solubilization of Cn in micellar solutions of Brij-35 is caused by the formation of mixed Cn-Brij-35 aggregates and is weakened substantially with the elongation of R. It was shown by pH-metry and 1D 1H NMR spectroscopy that the receptor properties of the Cn anions toward the tetramethylammonium cations in the mixed aggregates differ substantially from those for the monomeric molecules in aqueous-organic and aqueous solutions. In particular, the binding of the tetramethylammonium cations does not result in screening of their N-Me fragments with the cyclophane cavity of the receptor.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 376–382, February, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号