首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Burgers vortices are stationary solutions of the three-dimensional Navier–Stokes equations in the presence of a background straining flow. These solutions are given by explicit formulas only when the strain is axisymmetric. In this paper we consider a weakly asymmetric strain and prove in that case that non-axisymmetric vortices exist for all values of the Reynolds number. In the limit of large Reynolds numbers, we recover the asymptotic results of Moffatt, Kida & Ohkitani [11]. We also show that the asymmetric vortices are stable with respect to localized two-dimensional perturbations.  相似文献   

3.
We consider a stationary Navier–Stokes flow in a bounded domain supplemented with the complete slip boundary conditions. Assuming the boundary of the domain is formed by a family of unidirectional asperities, whose amplitude as well as frequency is proportional to a small parameter ε, we shall show that in the asymptotic limit the motion of the fluid is governed by the same system of the Navier–Stokes equations, however, the limit boundary conditions are different. Specifically, the resulting boundary conditions prevent the fluid from slipping in the direction of asperities, while the motion in the orthogonal direction is allowed without any constraint. The work of Š. N. supported by Grant IAA100190505 of GA ASCR in the framework of the general research programme of the Academy of Sciences of the Czech Republic, Institutional Research Plan AV0Z10190503.  相似文献   

4.
In a three-dimensional domain Ω with J cylindrical outlets to infinity the problem is treated how solutions to the stationary Stokes and Navier–Stokes system with pressure conditions at infinity can be approximated by solutions on bounded subdomains. The optimal artificial boundary conditions turn out to have singular coefficients. Existence, uniqueness and asymptotically precise estimates for the truncation error are proved for the linear problem and for the nonlinear problem with small data. The results include also estimates for the so called “do-nothing” condition.  相似文献   

5.
In this paper we establish spatial decay estimates for derivatives of vorticities solving the two-dimensional vorticity equations equivalent to the Navier–Stokes equations. As an application we derive asymptotic behaviors of derivatives of vorticities at time infinity. It is well known by now that the vorticity behaves asymptotically as the Oseen vortex provided that the initial vorticity is integrable. We show that each derivative of the vorticity also behaves asymptotically as that of the Oseen vortex.   相似文献   

6.
We consider the problem of solving numerically the stationary incompressible Navier–Stokes equations in an exterior domain in two dimensions. For numerical purposes we truncate the domain to a finite sub-domain, which leads to the problem of finding so called “artificial boundary conditions” to replace the boundary conditions at infinity. To solve this problem we construct – by combining results from dynamical systems theory with matched asymptotic expansion techniques based on the old ideas of Goldstein and Van Dyke – a smooth divergence free vector field depending explicitly on drag and lift and describing the solution to second and dominant third order, asymptotically at large distances from the body. The resulting expression appears to be new, even on a formal level. This improves the method introduced by the authors in a previous paper and generalizes it to non-symmetric flows. The numerical scheme determines the boundary conditions and the forces on the body in a self-consistent way as an integral part of the solution process. When compared with our previous paper where first order asymptotic expressions were used on the boundary, the inclusion of second and third order asymptotic terms further reduces the computational cost for determining lift and drag to a given precision by typically another order of magnitude. Peter Wittwer: Supported in part by the Fonds National Suisse.  相似文献   

7.
In this article, we present a modern derivation of Jeffery’s equation for the motion of a small rigid body immersed in a Navier–Stokes flow, using methods of asymptotic analysis. While Jeffery’s result represents the leading order equations of a singularly perturbed flow problem involving ellipsoidal bodies, our formulation is for bodies of general shape and we also derive the equations of the next relevant order.   相似文献   

8.
This paper presents the use of a parameter continuation method and a test function to solve the steady, axisymmetric incompressible Navier–Stokes equations for spherical Couette flow in a thin gap between two concentric, differentially rotating spheres. The study focuses principally on the prediction of multiple steady flow patterns and the construction of bifurcation diagrams. Linear stability analysis is conducted to determine whether or not the computed steady flow solutions are stable. In the case of a rotating inner sphere and a stationary outer sphere, a new unstable solution branch with two asymmetric vortex pairs is identified near the point of a symmetry-breaking pitchfork bifurcation which occurs at a Reynolds number equal to 789. This solution transforms smoothly into an unstable asymmetric 1-vortex solution as the Reynolds number increases. Another new pair of unstable 2-vortex flow modes whose solution branches are unconnected to previously known branches is calculated by the present two-parameter continuation method. In the case of two rotating spheres, the range of existence in the (Re 1 , Re 2 ) plane of the one and two vortex states, the vortex sizes as a function of both Reynolds numbers are identified. Bifurcation theory is used to discuss the origin of the calculated flow modes. Parameter continuation indicates that the stable states are accompanied by certain unstable states. Received 26 November 2001 and accepted 10 May 2002 Published online 30 October 2002 Communicated by M.Y. Hussaini  相似文献   

9.
The generalized Proudman–Johnson equation, which was derived from the Navier–Stokes equations by Jinghui Zhu and the author, are considered in the case where the viscosity is neglected and the periodic boundary condition is imposed. The equation possesses two nonlinear terms: the convection and stretching terms. We prove that the solution exists globally in time if the stretching term is weak in the sense to be specified below. We also discuss on blow-up solutions when the stretching term is strong. Partly supported by the Grant-in-Aid for Scientific Research from JSPS No. 14204007.  相似文献   

10.
This paper is devoted to a scalar model of the Oseen equations, a linearized form of the Navier–Stokes equations. To control the behavior of functions at infinity, the problem is set in weighted Sobolev spaces including anisotropic weights. In a first step, some weighted Poincaré-type inequalities are obtained. In a second step, we establish existence, uniqueness and regularity results.  相似文献   

11.
We describe a procedure for large eddy simulations of turbulence which uses the subgrid-scale estimation model and truncated Navier–Stokes dynamics. In the procedure the large eddy simulation equations are advanced in time with the subgrid-scale stress tensor calculated from the parallel solution of the truncated Navier–Stokes equations on a mesh two times smaller in each Cartesian direction than the mesh employed for a discretization of the resolved quantities. The truncated Navier–Stokes equations are solved through a sequence of runs, each initialized using the subgrid-scale estimation model. The modeling procedure is evaluated by comparing results of large eddy simulations for isotropic turbulence and turbulent channel flow with the corresponding results of experiments, theory, direct numerical simulations, and other large eddy simulations. Subsequently, simplifications of the general procedure are discussed and evaluated. In particular, it is possible to formulate the procedure entirely in terms of the truncated Navier–Stokes equation and a periodic processing of the small-scale component of its solution. Received 27 April 2001 and accepted 16 December 2001  相似文献   

12.
Explicit formulae for the fundamental solution of the linearized time dependent Navier–Stokes equations in three spatial dimensions are obtained. The linear equations considered in this paper include those used to model rigid bodies that are translating and rotating at a constant velocity. Estimates extending those obtained by Solonnikov in [23] for the fundamental solution of the time dependent Stokes equations, corresponding to zero translational and angular velocity, are established. Existence and uniqueness of solutions of these linearized problems is obtained for a class of functions that includes the classical Lebesgue spaces Lp(R3), 1 < p < ∞. Finally, the asymptotic behavior and semigroup properties of the fundamental solution are established.  相似文献   

13.
It is known that the three-dimensional Navier–Stokes system for an incompressible fluid in the whole space has a one parameter family of explicit stationary solutions that are axisymmetric and homogeneous of degree −1. We show that these solutions are asymptotically stable under any L 2-perturbation.  相似文献   

14.
The steady state system of isothermal Navier–Stokes equations is considered in two dimensional domain including an obstacle. The shape optimisation problem of minimisation of the drag with respect to the admissible shape of the obstacle is defined. The generalized solutions for the Navier–Stokes equations are introduced. The existence of an optimal shape is proved in the class of admissible domains. In general the solutions are not unique for the problem under considerations.  相似文献   

15.
Concerning to the non-stationary Navier–Stokes flow with a nonzero constant velocity at infinity, just a few results have been obtained, while most of the results are for the flow with the zero velocity at infinity. The temporal stability of stationary solutions for the Navier–Stokes flow with a nonzero constant velocity at infinity has been studied by Enomoto and Shibata (J Math Fluid Mech 7:339–367, 2005), in L p spaces for p ≥ 3. In this article, we first extend their result to the case \frac32 < p{\frac{3}{2} < p} by modifying the method in Bae and Jin (J Math Fluid Mech 10:423–433, 2008) that was used to obtain weighted estimates for the Navier–Stokes flow with the zero velocity at infinity. Then, by using our generalized temporal estimates we obtain the weighted stability of stationary solutions for the Navier–Stokes flow with a nonzero velocity at infinity.  相似文献   

16.
New sufficient conditions of local regularity for suitable weak solutions to the non-stationary three-dimensional Navier–Stokes equations are proved. They contain the celebrated Caffarelli–Kohn–Nirenberg theorem as a particular case.   相似文献   

17.
We are concerned with the large-time behavior of solutions of the Cauchy problem to the one-dimensional compressible Navier–Stokes system for ideal polytropic fluids, where the far field states are prescribed. When the corresponding Riemann problem for the compressible Euler system admits the solution consisting of contact discontinuity and rarefaction waves, it is proved that for the one-dimensional compressible Navier–Stokes system, the combination wave of a “viscous contact wave”, which corresponds to the contact discontinuity, with rarefaction waves is asymptotically stable, provided the strength of the combination wave is suitably small. This result is proved by using elementary energy methods.  相似文献   

18.
We derive a sufficient condition for stability of a steady solution of the Navier–Stokes equation in a 3D exterior domain Ω. The condition is formulated as a requirement on integrability on the time interval (0, +∞) of a semigroup generated by the linearized problem for perturbations, applied to a finite family of certain functions. The norm of the semigroup is measured in a bounded sub-domain of Ω. We do not use any condition on “smallness” of the basic steady solution.   相似文献   

19.
We prove a Serrin-type regularity result for Leray–Hopf solutions to the Navier–Stokes equations, extending a recent result of Zhou [28].  相似文献   

20.
A sufficient condition of regularity for solutions to the Navier–Stokes equations is proved. It generalizes the so-called L 3,∞-case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号