首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we derive various sufficient conditions on the pressure for vanishing velocity in the incompressible Navier-Stokes and the Euler equations in ? N .  相似文献   

2.
This paper studies the approximation of the non‐Newtonian fluid equations by the artificial compressibility method. We first introduce a family of perturbed compressible non‐Newtonian fluid equations (depending on a positive parameter ε) that approximates the incompressible equations as ε → 0+. Then, we prove the unique existence and convergence of solutions for the compressible equations to the solutions of the incompressible equations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the authors consider the zero-viscosity limit of the three dimensional incompressible steady Navier-Stokes equations in a half space R+×R2. The result shows that the solution of three dimensional incompressible steady Navier-Stokes equations converges to the solution of three dimensional incompressible steady Euler equations in Sobolev space as the viscosity coefficient going to zero. The method is based on a new weighted energy estimates and Nash-Moser itera...  相似文献   

4.
We consider the asymptotic behavior of the strong solution to the incompressible magnetohydrodynamics (MHD) equations in a half space. The Lr‐decay rates of the strong solution and its derivatives with respect to space variables and time variable, including the L1 and L decay rates of its first order derivatives with respect to space variables, are derived by using Lq ? Lr estimates of the Stokes semigroup and employing a decomposition for the nonlinear terms in MHD equations. In addition, if the given initial data lie in a suitable weighted space, we obtain more rapid decay rates than observed in general. Similar results are known for incompressible Navier–Stokes equations in a half space under same assumption. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This paper utilizes the Picard method and Newton's method to linearize the stationary incompressible Navier–Stokes equations and then uses an LL* approach, which is a least-squares finite element method applied to the dual problem of the corresponding linear system. The LL* approach provides an L2-approximation to a given problem, which is not typically available with conventional finite element methods for nonlinear second-order partial differential equations. We first show that the proposed combination of linearization scheme and LL* approach provides an L2-approximation to the stationary incompressible Navier–Stokes equations. The validity of L2-approximation is proven through the analysis of the weak problem corresponding to the linearized Navier–Stokes equations. Then, the convergence is analyzed, and numerical results are presented.  相似文献   

6.
We study the regularity criteria for weak solutions to the incompressible magnetohydrodynamic (MHD) equations. Some regularity criteria, which are related only with u+B or u?B, are obtained for weak solutions to the MHD equations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
An approach is introduced to construct global discontinuous solutions in L∞ for Hamilton-Jacobi equations. This approach allows the initial data only in L∞ and applies to the equations with nonconvex Hamiltonians. The profit functions are introduced to formulate the notion of discontinuous solutions in L∞. The existence of global discontinuous solutions in L∞ is established. These solutions in L∞ coincide with the viscosity solutions and the minimax solutions, provided that the initial data are continuous. A prototypical equation is analyzed toexamine the L∞ stability of our L∞ solutions. The analysis also shows that global discontinuous solutions are determined by the topology in which the initial data are approximated.  相似文献   

8.
We study the Navier–Stokes equations for nonhomogeneous incompressible fluids in a bounded domain Ω of R3. We first prove the existence and uniqueness of local classical solutions to the initial boundary value problem of linear Stokes equations and then we obtain the existence and uniqueness of local classical solutions to the Navier–Stokes equations with vacuum under the assumption that the data satisfies a natural compatibility condition.  相似文献   

9.
The weighted Lr‐asymptotic behavior of the strong solution and its first‐order spacial derivatives to the incompressible magnetohydrodynamic (MHD) equations is established in a half‐space. Further, the L‐decay rates of the second‐order spatial derivatives of the strong solution are derived by using the Stokes solution formula and employing a decomposition for the nonlinear terms in MHD equations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
ABSTRACT

The combining quasineutral and inviscid limit of the Navier–Stokes–Poisson system in the torus 𝕋 d , d ≥ 1 is studied. The convergence of the Navier–Stokes–Poisson system to the incompressible Euler equations is proven for the global weak solution and for the case of general initial data.  相似文献   

11.
We obtain Gevrey regular mild solutions to the incompressible Navier–Stokes equations in R n with periodic boundary condition in a subset of the variables. The method is based on an extension of Young's convolution inequality in weighted Lebesgue spaces of measurable functions defined on locally compact abelian groups. This generalizes and provides a unified treatment of the Gevrey regularity result of Foias and Temam in the space periodic case and those of Le Jan and Sznitman and Lemarié–Rieusset in the whole space with no boundary.  相似文献   

12.
This paper is mainly devoted to a comparative study of two iterative least-squares finite element schemes for solving the stationary incompressible Navier–Stokes equations with velocity boundary condition. Introducing vorticity as an additional unknown variable, we recast the Navier–Stokes problem into a first-order quasilinear velocity–vorticity–pressure system. Two Picard-type iterative least-squares finite element schemes are proposed to approximate the solution to the nonlinear first-order problem. In each iteration, we adopt the usual L 2 least-squares scheme or a weighted L 2 least-squares scheme to solve the corresponding Oseen problem and provide error estimates. We concentrate on two-dimensional model problems using continuous piecewise polynomial finite elements on uniform meshes for both iterative least-squares schemes. Numerical evidences show that the iterative L 2 least-squares scheme is somewhat suitable for low Reynolds number flow problems, whereas for flows with relatively higher Reynolds numbers the iterative weighted L 2 least-squares scheme seems to be better than the iterative L 2 least-squares scheme. Numerical simulations of the two-dimensional driven cavity flow are presented to demonstrate the effectiveness of the iterative least-squares finite element approach.  相似文献   

13.
We develop and analyze a least‐squares finite element method for the steady state, incompressible Navier–Stokes equations, written as a first‐order system involving vorticity as new dependent variable. In contrast to standard L2 least‐squares methods for this system, our approach utilizes discrete negative norms in the least‐squares functional. This allows us to devise efficient preconditioners for the discrete equations, and to establish optimal error estimates under relaxed regularity assumptions. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 237–256, 1999  相似文献   

14.
We consider Galerkin approximations for the equations modeling the motion of an incompressible magneto‐micropolar fluid in a bounded domain. We derive an optimal uniform in time error bound in the H1 and L2 ‐norms for the velocity. This is done without explicit assumption of exponential stability for a class of solutions corresponding to decaying external force fields. Our study is done for no‐slip boundary conditions, but the results obtained are easily extended to the case of periodic boundary conditions. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 689–706, 2012  相似文献   

15.
In this paper we are concerned with a weighted least-squares finite element method for approximating the solution of boundary value problems for 2-D viscous incompressible flows. We consider the generalized Stokes equations with velocity boundary conditions. Introducing the auxiliary variables (stresses) of the velocity gradients and combining the divergence free condition with some compatibility conditions, we can recast the original second-order problem as a Petrovski-type first-order elliptic system (called velocity–stress–pressure formulation) in six equations and six unknowns together with Riemann–Hilbert-type boundary conditions. A weighted least-squares finite element method is proposed for solving this extended first-order problem. The finite element approximations are defined to be the minimizers of a weighted least-squares functional over the finite element subspaces of the H1 product space. With many advantageous features, the analysis also shows that, under suitable assumptions, the method achieves optimal order of convergence both in the L2-norm and in the H1-norm. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

16.
We study the convergence of two generalized marker‐and‐cell covolume schemes for the incompressible Stokes and Navier–Stokes equations introduced by Cavendish, Hall, Nicolaides, and Porsching. The schemes are defined on unstructured triangular Delaunay meshes and exploit the Delaunay–Voronoi duality. The study is motivated by the fact that the related discrete incompressibility condition allows to obtain a discrete maximum principle for the finite volume solution of an advection–diffusion problem coupled to the flow. The convergence theory uses discrete functional analysis and compactness arguments based on recent results for finite volume discretizations for the biharmonic equation. For both schemes, we prove the strong convergence in L2 for the velocities and the discrete rotations of the velocities for the Stokes and the Navier–Stokes problem. Further, for one of the schemes, we also prove the strong convergence of the pressure in L2. These predictions are confirmed by numerical examples presented in the article. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1397–1424, 2014  相似文献   

17.
In this paper, we derive the global existence of smooth solutions of the 3 D incompressible Euler equations with damping for a class of laxge initial data, whose Sobolev norms H~s can be arbitrarily large for any s ≥ 0. The approach is through studying the quantity representing the difference between the vorticity and velocity. And also, we construct a family of large solutions for MHD equations with damping.  相似文献   

18.
We introduce Besov type function spaces, based on the weak L p -spaces instead of the standard L p -spaces, and prove a local-in-time unique existence and a blow-up criterion of solutions in those spaces for the Euler equations of perfect incompressible fluid in . For the proof, we establish the Beale-Kato-Majda type logarithmic inequality and commutator type estimates in our weak spaces. Abbreviate title: Euler equations in Besov spaces of weak type  相似文献   

19.
Following earlier work for Stokes equations, a least squares functional is developed for two‐ and three‐dimensional Oseen equations. By introducing a velocity flux variable and associated curl and trace equations, ellipticity is established in an appropriate product norm. The form of Oseen equations examined here is obtained by linearizing the incompressible Navier–Stokes equations. An algorithm is presented for approximately solving steady‐state, incompressible Navier–Stokes equations with a nested iteration‐Newton‐FOSLS‐AMG iterative scheme, which involves solving a sequence of Oseen equations. Some numerical results for Kovasznay flow are provided. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we study the quasi-neutral limit of compressible Euler-Poisson equations in plasma physics in the torus Td. For well prepared initial data the convergence of solutions of compressible Euler-Poisson equations to the solutions of incompressible Euler equations is justified rigorously by an elaborate energy methods based on studies on an λ-weighted Lyapunov-type functional. One main ingredient of establishing uniformly a priori estimates with respect to λ is to use the curl-div decomposition of the gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号