首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This tutorial review first details the uncontrolled microemulsion polymerization mechanism, and the RAFT polymerization mechanism to provide the necessary background for examining the RAFT microemulsion polymerization mechanism. The effect of the chain transfer agent per micelle ratio and the chain transfer agent aqueous solubility on the RAFT microemulsion polymerization kinetics, polymer molecular weight and polydispersity, and polymer nanoparticle size are discussed with a focus on oil-in-water microemulsions. Modeling of RAFT microemulsion polymerization kinetics and the resulting final polymer molecular weight are presented to assist with the analysis of observed experimental trends. Lastly, the current significance of RAFT microemulsion polymerization and the future directions are discussed.  相似文献   

2.
Using γ-radiation as initiation source at ambient temperatures (i.e. T≈20 °C) for reversible addition-fragmentation chain transfer (RAFT) polymerizations allows for the generation of narrowly distributed polymeric material with living characteristics. It is shown that the living characteristics effected by RAFT agent mediated bulk polymerizations using γ-irradiation are associated with a RAFT mechanism rather than with reversible termination processes. Furthermore, γ-radiation as initiation source for an appropriate RAFT agent/monomer system allows for effective radical storage and the generation of long-lived reaction intermediates at ambient temperatures.The current overview further demonstrates how the RAFT process together with γ-radiation as source of initiation can be employed to graft various monomers onto polypropylene surfaces in a controlled manner.  相似文献   

3.
We recently reported a bifunctional methacrylate monomer having a side-opened cage-silsesquioxane as a scaffold. Although free-radical polymerization proceeded mainly through cyclopolymerization, cross-linking structures were included. In this work, we have optimized the reaction conditions for reversible addition-fragmentation chain transfer cyclopolymerization using 2-cyano-2-propyl dithiobenzoate. As a result, polymers with relatively low polydispersity indices were successfully obtained. After removal of dithiobenzoate end groups, the transparency was high (>98%) in the range of visible range (400–800 nm). The content of the unreacted dangling vinyl groups, which was controlled by monomer concentration, affected the thermal stability of the resulting polymers. In addition, the bifunctional cage-silsesquioxane monomer can be readily copolymerized with methyl methacrylate without cross-linking.  相似文献   

4.
柴云  许凯  李世豪  张普玉 《化学研究》2019,30(2):202-210
RAFT(Reversible addition-fragmentation chain transfer,可逆加成-断裂链转移)自由基存在链增长自由基与链转移剂(RAFT试剂)之间的可逆蜕化转移,现已广泛应用于聚合物分子结构设计及众多功能高分子材料的合成,受到众多高分子研究者的关注,是一种发展较快的可控/活性聚合技术.本文在简要介绍了RAFT聚合发展历程基础上,综述了RAFT聚合反应机理,RAFT试剂的结构及其对聚合性能的影响,RAFT试剂与单体的匹配性,RAFT聚合实施方法等.同时也对RAFT聚合反应的发展进行了展望.  相似文献   

5.
Pseudo-living radical copolymerization of methyl methacrylate and methyl acrylate under reversible addition-fragmentation chain transfer in a mass in the presence of reversible chain transfer agents of different nature was implemented. A comparison of physical and mechanical properties of narrowly dispersed copolymers was performed as well as copolymers obtained by uncontrolled radical polymerization.  相似文献   

6.
综述了活性/可控自由基聚合中的可逆加成-断裂链转移(RAFT)自由基聚合研究进展;总结了RAFT试剂、RAFT聚合反应条件、RAFT聚合物及其结构形貌的最新研究进展;指出RAFT自由基聚合反应已被作为重要方法之一用于合成具有特定分子结构的聚合物.  相似文献   

7.
We report herein a visible light-induced metal-free living polymerization with high oxygen tolerance that can be performed in aqueous media. In contrast with ordinary living/controlled radical polymerizations, oxygen can be present throughout the entire reaction process. This reaction can be photo-induced and proceeds at room temperature. First, we have successfully synthesized a well-defined polymer in an ambient atmosphere by the photo-induced radical polymerization method, using acrylic acid as a monomer and fluorescein as a photocatalyst. However, the subsequent chain extension reaction did not occur, possibly due to oxidation of the chain transfer agent (CTA). Despite this, we found that the addition of vitamin C (ascorbic acid) imparted the process with oxygen tolerance. We conducted a systematic study to optimize the best concentrations of the key reagents including the monomer, CTA, fluorescein, and vitamin C. Through these optimizations we were able to synthesize in the presence of oxygen a series of well-defined poly(acrylic acid)s (PAAs) with dispersities (Ð) below 1.3 and molecular weights that closely matched the theoretical values. The kinetic study showed that the molecular weight of the produced PAA increased linearly with the conversion of the monomer, and chain extension reaction also yielded a block polymer with a higher molecular weight than that of the previous polymer. Therefore, we developed a novel photo-induced living polymerization method that can be conducted both in the absence of oxygen and in the presence of air. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2437–2444  相似文献   

8.
1-alkyl-3-methylimidazolium hexfluorophosphate ([Cx][PF6], where x=4, 6-8) is used as solvent for the polymerisation of methyl methacrylate, methyl acrylate and styrene by the reversible addition-fragmentation chain transfer process. In the case of styrene, the insolubility of the polymer in ionic liquid stops the polymerization at an early stage. The acrylate and methacrylate polymerizations lead to products with molecular weights close to the theoretical ones and polydispersity indexes lower than 1.3. The polymerizations are shown to be living by chain extension of the products formed in ionic liquid. In the case of the methyl methacrylate, the kinetics of the polymerizations are followed and the molecular weight of the polymer is shown to increase linearly with the conversion, as expected for a living polymerization.  相似文献   

9.
The feasibility of radical copolymerization of β-pinene and methyl acrylate (MA) was clarified for the first time. The monomer reactivity ratios were evaluated by Fineman-Ross, Kelen-Tudos and non-linear methods, respectively. The obtained values were rβ-pinene ∼ 0 and rMA ∼ 1.3, indicating that the copolymerization led to polymers rich in methyl acrylate units and randomly alternated by single β-pinene unit. The addition of Lewis acid Et2AlCl to the AIBN-initiated copolymerization enhanced the incorporation of β-pinene. Furthermore, the possible controlled copolymerization of β-pinene and MA was then attempted via the reversible addition-fragmentation transfer (RAFT) technique. The copolymerization (fβ-pinene = 0.1) using 1-methoxycarbonyl ethyl dithiobenzoate (MEDB) as a RAFT agent gave copolymers with lower molecular weight and narrower molecular weight distribution. However, the presence of MEDB strongly retarded the copolymerization. Thus a new RAFT agent 1-methoxycarbonyl ethyl phenyldithioacetate (MEPD), which gives a less stable macroradical intermediate than MEDB, was synthesized and introduced to the copolymerization. As anticipated, a much smaller retardation was observed. Moreover, the copolymerization displayed a somewhat controlled features within a certain overall conversion (<∼40%).  相似文献   

10.
Molecularly imprinted monolithic columns for selective separation of enrofloxacin were prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT)-mediated radical polymerization. Different ratios of initiation system were used in the synthesis. The structures of the monoliths were characterized to study the relationship between the synthetic conditions and morphology of the monolithic material. The separation performance of the monoliths was evaluated by liquid chromatography. Under optimized synthetic conditions, a monolithic molecularly imprinted polymer (MIP) with high selectivity and improved column efficiency was obtained. The research has shown that RAFT polymerization provides more adjustable conditions for making monolithic materials with different morphologies. The results also demonstrated that homogeneous macro-pore size distribution and large specific surface area are the key factors providing good separation ability and column efficiency for MIP monolithic structures.  相似文献   

11.
12.
Modern approaches to the synthesis of tailor-made macromolecules by radical polymerization proceeding through the reversible addition-fragmentation chain-transfer mechanism are considered. The mechanism of this process and the experimental and calculation methods for determining its main kinetic parameters are discussed. Particular emphasis is placed on the problems of designing copolymers of various microstructures, including random, gradient, and block copolymers.  相似文献   

13.
Amphiphilic block copolymers were synthesized via a dual initiator chain transfer agent (inifer) that successfully initiated the ring opening polymerization (ROP) of l -lactide (LLA) and subsequently mediated the reversible addition-fragmentation chain transfer (RAFT) polymerization of poly(ethylene glycol) ethyl ether methacrylate (PEGEEMA). The formation of each polymer block was confirmed using 1H nuclear magnetic resonance spectroscopy, as well as gel permeation chromatography, and comprehensive kinetics studies provide valuable insights into the factors influencing the synthesis of well-defined block copolymers. The effect of monomer concentration, reaction time, and molar ratios of inifer to catalyst on the ROP of LLA are discussed, as well as the ability to produce poly(lactide) blocks of different molecular weights. The synthesis of hydrophilic PPEGEEMA blocks was also monitored via kinetics to provide a better understanding of the role the chain transfer agent plays in facilitating the complex and sterically demanding RAFT polymerization of PEGEEMA.  相似文献   

14.
To make more homogenous organic monolithic structure,reversible addition-fragmentation chain transfer(RAFT) process was employed in the synthesis of the clenbuterol imprinted polymer.In the synthesis,the influence of synthetic conditions on the polymer structure and separation efficiency was studied.The result demonstrated that the imprinted columns prepared with RAFT process have higher column efficiency and selectivity than the columns prepared with conventional polymerization in the present study,whic...  相似文献   

15.
<正>Polystyrene-styrene/butadiene diblock copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization.During the polymerization process,the molecular weight distribution was narrow and the numerical molecular weight of the copolymers increased with increasing conversion of monomers,which was close to the theoretical.FT-IR and ~1H NMR results indicated that the microstructure of the polymer was mainly 1,4-trans-butadiene with small amount of 1,2-units,and composition in the copolymers was obtained.  相似文献   

16.
Photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of acrylonitrile (AN) in miniemulsion was reported. PET-RAFT polymerization of acrylonitrile (AN) was successfully accomplished with 4-cyanopentanoic acid dithiobenzoate (CPADB) as chain transfer agent (CTA), sodium dodecyl sulfate (SDS) as emulsifier, hexadecane (HD) as co-stabilizer and TiO2 as photocatalyst at 25?°C. The linear first-order kinetic plots were observed in miniemulsion with different amounts of SDS. Excellent temporal control was demonstrated by switching between ON/OFF states multiple times, and the prepared PAN macro-CTA was used successfully to perform the chain extension experiments, indicating high retention of chain end functionality. Furthermore, the obtained PAN was amidoximated with NH2OH·HCl. The Cd2+ was extracted with amidoxime (–C(NH2)=NOH) from aqueous solutions. The maximum adsorption of 98.6% Cd2+ with 400?mg of the adsorbent was observed at pH 6.0 and an initial Cd2+concentration of 4?mmol/L.  相似文献   

17.
In this study, synthesis of poly(epichlorohydrin-g-methyl methacrylate) graft copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization was reported. For this purpose, epichlorohydrin was polymerized by using HNO3 via cationic ring-opening mechanism. A RAFT macroinitiator (macro-RAFT agent) was obtained by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin. The graft copolymers were synthesized using macro-RAFT agent as initiator and methyl methacrylate as monomer. The synthesis of graft copolymers was conducted by changing the time of polymerization and the amount of monomer-initiator concentration that affect the RAFT polymerization. The effects of these parameters on polymerization were evaluated via various analyses. The characterization of the products was determined using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared spectroscopy, gel-permeation chromatography, thermogravimetric analysis, elemental analysis, and fractional precipitation techniques. The block lengths of the graft copolymers were calculated by using 1H-NMR spectrum. It was observed that the block length could be altered by varying the monomer and initiator concentrations.  相似文献   

18.
Microwave mediated RAFT polymerization leads to ultra-fast polymerizations, whilst keeping excellent control over molecular weights and molecular weight distributions; this is the first example of such a dramatic effect of microwaves on living radical polymerization kinetics, and it shows the potential for chemists to produce very well controlled polymers in a matter of minutes.  相似文献   

19.
Poly(N-isopropylacrylamide) (PNIPAM) with a narrow molecular weight distribution was prepared by reversible addition-fragmentation chain transfer (RAFT) radical polymerization. A dithioester group at the chain end of PNIPAM thus prepared was cleaved by treating with 2-ethanolamine to provide thiol-terminated PNIPAM with which gold nanoparticles were coated via reactions of the terminal thiol with gold. The thermoresponsive nature of the maximum wavelength of the surface plasmon band and hydrodynamic radius (Rh) for the PNIPAM-coated gold nanoparticles were found to be sensitively affected by added salt. In pure water, Rh for the PNIPAM-coated gold nanoparticles at 40 degrees C (>lower critical solution temperature (LCST)) was smaller than that at 25 degrees C (相似文献   

20.
The pseudoliving radical polymerization of methyl methacrylate in bulk mediated by dithiobenzoates with various leaving groups as reversible addition-fragmentation chain-transfer agents has been studied. It has been shown that polymerization proceeds under conditions of the low steady-state concentration of radical intermediates; as a result, the steady-state of the process is rapidly achieved even at low conversions. Retardation of polymerization observed at high concentrations of reversible addition-fragmentation chain-transfer agents is apparently associated with the occurrence of chain termination reactions involving intermediates, as evidenced by the model reaction. The autoacceleration of polymerization is suppressed with an increase in the concentration of reversible addition-fragmentation chain-transfer agents. An efficient approach to the synthesis of a narrow-dispersed PMMA with the controlled molecular mass has been suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号