首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Qualitative and quantitative proton magnetic resonance imaging techniques were applied to persimmon (Diospyros kaki cv 'Fuyu') fruit during development and post-harvest ripening. Spin-lattice (T(1)) relaxation times in mesocarp parenchyma and vascular tissue exhibited a sigmoidal pattern of increase leading to commercial harvest, but declined abruptly during ripening, 2.5 weeks after picking. T(1) times in parenchyma tissue were 1000 and 2100 ms in fruitlets, and at commercial harvest, respectively. T(1) times in vascular tissue were consistently shorter than those in parenchyma tissue by 300 to 600 ms. In contrast, spin-spin (T(2)) relaxation varied over a narrow range during development, i.e., 82 to 106 ms, and 59 to 73 ms, for parenchyma and vascular tissue, respectively. During ripening, T(2) measurements increased smoothly, commencing one week after harvest. Dry matter, water content, skin color, water-soluble tannins, soluble solids, and mineral and carbohydrate composition was also determined in companion fruit. No obvious associations linking physico-chemical and MR parameters were established, implying that the changes in relaxation measurements observed in 'simple' fruit systems can not be rationalised without recourse to more complex investigations involving SEM and different NMR spectroscopic and imaging techniques.  相似文献   

2.
Emulsion gels with low oil contents have been continuously developed in recent decades. In this study, the use of high-intensity ultrasound for the preparation of low oil emulsion gel (oil fraction of 0.25) was investigated. Specifically, defatted Antarctic krill protein (dAKP) was used to stabilize the interface of soybean oil and water. Then, the microstructure and the stabilization mechanism of the formed emulsion gel were evaluated by cryo-SEM, CLSM, zeta potential, rheological measurements, and FTIR. Besides, the particle diameter was measured to be around 5 μm. The results of CLSM indicated that the emulsion gel was the oil-in-water type. The emulsion gel exhibited gel-like viscoelastic behavior even at a low concentration of dAKP due to the formation of a rigid particle network while the rheological behavior of the emulsion gel was significantly affected by the concentration of dAKP. The stabilization of the emulsion gel can be maintained by space steric hindrance and hydrophobic interactions between particles in the emulsion gel system.  相似文献   

3.
The penetration of horse liver alcohol dehydrogenase (HLAD) molecules into polyacrylamide gel beads, which are used to immobilize the enzyme, was studied. HLAD was labeled with gadolinium diethylene-triamine-pentaacetic acid (Gd-DTPA), using the N-hydroxy-succinimide active ester of DTPA as a chelating agent. The HLAD-(Gd-DTPA)27 has a 3.7-fold larger longitudinal (R1) and a 14-fold larger transversal relaxivity (R2) (at 2.4 T) than the plain Gd-DTPA. A series of dry polyacrylamide gel beads, with total monomer concentration ranging from 5% to 30% were synthesized and swollen in a buffered solution of HLAD-(Gd-DTPA)27. The gel beads were examined with high resolution NMR imaging. The T1- and T2-weighted images revealed that the permeability for the labeled HLAD decreased with increasing total monomer concentration of the gel beads. These imaging results correlate fairly well with the enzymatic reactivities measured for the same range of gel beads but swollen in a solution of non labeled HLAD and NAD+ (nicotinamide adenine dinucleotide). It is concluded that Gd-labeling can be used to monitor the distribution of weakly concentrated, water soluble products in a solid matrix.  相似文献   

4.
137Cs is an important component of nuclear waste which may pollute water. Its migration in natural environments is slowed down by adsorption on minerals. Cesium adsorption on akaganeite (beta-FeOOH) particles, dextran-coated ferrihydrite (5 Fe(2)O(3)-9H(2)O) particles, and ferritin in aqueous solutions is studied with (133)Cs nuclear magnetic resonance measurements. The longitudinal relaxation time (T(1)) of (133)Cs in the presence of such magnetic particles depends on whether the ions bind to the particle or not. T(1) of (133)Cs ions in aqueous solutions containing the same amount of magnetized particles will not depend on cesium concentration if relaxation is governed by diffusion (when cesium is not able to bind), but it will depend on cesium concentration if exchange governs relaxation (when cesium is able to bind). The method is successfully tested using TEMPO, a nitroxide stable free radical whose relaxation is due to diffusion. (133)Cs relaxation in solutions of ferritin, akaganeite, and dextran-coated ferrihydrite particles is found to result from a cationic exchange of cesium ions between particles surface and bulk ions, owing to adsorption. The effect of pH on (133)Cs relaxation in solutions of the particles is consistent with the adsorption properties of cations on hydrated iron oxides.  相似文献   

5.
Experiments are presented, which correlate molecular displacement with the multi-exponential T2 relaxation times of water flowing and diffusing through an alginate bead pack. Three systems were studied comprising beads of 3, 1 or < mm in diameter. T2-resolved propagators were obtained through a combined pulsed gradient stimulated echo (PGSTE) and Carr-Purcell-Meiboom-Gill (CPMG) experiment. Fourier transformation with respect to q produces a propagator for each echo in the CPMG train. Inverse Laplace transformation of the CPMG decays for each point (Z) in the propagator produced a two-dimensional propagator. Analysis of these two-dimensional propagators provided insight into the transport and exchange behaviour of water flowing through this system. This experiment has been simulated in a model bead structure and the resulting T2 relaxation time behaviour and T2-resolved propagators were found to be in good agreement with the experimental data. We also present a theoretical analysis of the response to the combined PGSTE/CPMG sequence in the simple model case of Pouseille flow in a cylindrical capillary, where diffusion to a surface sink is assumed to be the dominant relaxation mechanism.  相似文献   

6.
The presence of long-range dipolar fields in liquids is known to introduce a non-linear term in the Bloch-Torrey equations which is responsible for many interesting effects in nuclear magnetic resonance as well as in magnetic resonance imaging. We show here, for the first time, that the diffusion coefficient D and the spin-spin relaxation time T2 can be obtained simultaneously from the time evolution profile of the long-range dipolar field refocused signal. In a COSY Revamped by Z-asymmetric Echo Detection sequence, the analytical first-order approximation solution of the Bloch-Torrey equations modified to include the effect of the distant dipolar field is used to demonstrate the technique in an experiment using doped water.  相似文献   

7.
张颖  郑宇  何茂刚 《物理学报》2018,67(16):167801-167801
光散射技术通过测量悬浮液中布朗运动颗粒的平移扩散系数,得到颗粒流体力学直径或液体黏度.本文由单参数模型入手,建立了低颗粒浓度下,单颗粒平移扩散系数与颗粒集体平移扩散系数和颗粒浓度之间的线性依存关系并将其引入光散射法中,从而对现有的测量方法进行了改进.改进后的测量方法可实现纳米尺度球型颗粒标称直径的测量和液体黏度的绝对法测量.以聚苯乙烯颗粒+水和二氧化硅颗粒+乙醇两个分散系为参考样本,通过实验,验证了改进后方法的可行性.此外,还针对上述两个分散系,实验探讨了温度和颗粒浓度对颗粒集体平移扩散系数的影响规律,发现聚苯乙烯颗粒+水分散系中,颗粒间相互作用表现为引力;二氧化硅颗粒+乙醇分散系中,颗粒间相互作用表现为斥力.讨论了颗粒集体平移扩散系数随颗粒浓度变化规律与第二渗透维里系数的关系.  相似文献   

8.
Spherical alginate beads were prepared by ionotropic gelation of sodium alginate through the use of calcium ions. Pyranine (Py) was added to the alginate solution as a small molecule probe for fluorescence studies. Desorption of Py in water from the alginate beads cross-linked with calcium ions was studied by using the steady state fluorescence technique. The fluorescence emission intensity (I) from Py was monitored during the desorption process at 512 nm using the time drive mode of the spectrofluorometer. The increase in I was attributed to Py release from the beads. The Fickian diffusion model was used to calculate the desorption coefficients, D, which were found to be increased up to 3% (w/v) CaCl2 concentration in the beads, and then decreased with a further increase of CaCl2 content. On the other hand, the encapsulation efficiency of Py in the calcium alginate beads presented the reverse behavior compared to D. It was observed that, when the content of CaCl2 was increased, the incubation time, t0, for the start of desorption increased.  相似文献   

9.
The E' defect in irradiated fused quartz has spin lattice relaxation times (T(1)) about 100 to 300 μs and spin-spin relaxation times (T(2)) up to about 200 μs, depending on the concentration of defects and other species in the sample. These long relaxation times make it difficult to record an unsaturated continuous wave (CW) electron paramagnetic resonance (EPR) signal that is free of passage effects. Signals measured at X-band (~9.5 GHz) by three EPR methods: conventional slow-scan field modulated EPR, rapid scan EPR, and pulsed EPR, were compared. To acquire spectra with comparable signal-to-noise, both pulsed and rapid scan EPR require less time than conventional CW EPR. Rapid scan spectroscopy does not require the high power amplifiers that are needed for pulsed EPR. The pulsed spectra, and rapid scan spectra obtained by deconvolution of the experimental data, are free of passage effects.  相似文献   

10.
Ferromagnetic or superparamagnetic particles as MRI contrast agent present many advantages for bringing about soft tissue contrast as compared to single-ion complexes. The classic microscopic outersphere theory that works successfully for small molecules in understanding the transverse relaxation rate 1/T(2) is not valid for these larger and stronger magnetic spheres. We categorize the relaxation behavior of the tissue-sphere system for ferromagnetic spherical perturbers in five diffusion regimes. Over the entire range of perturber size a general understanding of the relaxation mechanisms is described in terms of basic physical features of the system, and, through empiric models, the imaging sequences of spin echo and gradient echo. The models are verified with results of our spectroscopic measurements as well as simulations and experiments in the literature. Normalized models, obtained through proper scaling of the sphere radius and the relaxation rate, can be used to quantitatively estimate 1/T(2) for various combinations of the variables. Effects of diffusion upon image contrast and effects of sphere size change upon relaxation with their possible applications in microvascular dilatation and other areas are then discussed.  相似文献   

11.
By combining magnetic field cycling in the range from 0.1mT to 7T with high-resolution NMR detection the T(1) relaxation dispersion (nuclear magnetic relaxation dispersion (NMRD)) of protons in the nucleotides adenosine mono-phosphate and guanosine mono-phosphate was measured in a site-specific way. While at high field the individual spins have distinctly different T(1) times, their scalar spin-spin interaction fulfills at low field the condition of strong coupling and leads to convergence of their T(1) dispersion curves. In addition, the spin-spin coupling can lead to oscillatory components in the relaxation kinetics traceable to a coupling between spin polarization and coherence in the relaxation process. As a consequence the NMRD curves do not directly reflect the spectral density function of the motional processes, but the effects of motion and spin coupling must be separated for a reliable evaluation. A theoretical approach is described allowing such an analysis.  相似文献   

12.
A combined study of2H nuclear magnetic resonance lineshape and spin-lattice and spin-spin relaxation times as functions of temperature and the amount of hydration water in a cross-linked copolymer of sucrose and 1,4-butadienol diglycidyl ether in the hydrogel phase is reported. The results show strong evidence that the onset of the relaxation mechanisms is driven by anomalous water molecule diffusion depending on both temperature and the hydration degree of the hydrogel. In addition, these results are correlated with the transitions observed by differential thermal analysis.  相似文献   

13.
Proton spin-lattice relaxation by paramagnetic centers may be dramatically enhanced if the paramagnetic center is rotationally immobilized in the magnetic field. The details of the relaxation mechanism are different from those appropriate to solutions of paramagnetic relaxation agents. We report here large enhancements in the proton spin-lattice relaxation rate constants associated with organic radicals when the radical system is rigidly connected with a rotationally immobilized macromolecular matrix such as a dry protein or a cross-linked protein gel. The paramagnetic contribution to the protein-proton population is direct and distributed internally among the protein protons by efficient spin diffusion. In the case of a cross-linked-protein gel, the paramagnetic effects are carried to the water spins indirectly by chemical exchange mechanisms involving water molecule exchange with rare long-lived water molecule binding sites on the immobilized protein and proton exchange. The dramatic increase in the efficiency of spin relaxation by organic radicals compared with metal systems at low magnetic field strengths results because the electron relaxation time of the radical is orders of magnitude larger than that for metal systems. This gain in relaxation efficiency provides completely new opportunities for the design of spin-lattice relaxation based contrast agents in magnetic imaging and also provides new ways to examine intramolecular protein dynamics.  相似文献   

14.
A magnetic resonance imaging method is presented for imaging of heterogeneous broad linewidth materials. This method allows for distortionless relaxation weighted imaging by obtaining multiple phase encoded k-space data points with each RF excitation pulse train. The use of this method, turbo spin echo single-point imaging-(turboSPI), leads to decreased imaging times compared to traditional constant-time imaging techniques, as well as the ability to introduce spin-spin relaxation contrast through the use of longer effective echo times. Imaging times in turboSPI are further decreased through the use of low flip angle steady-state excitation. Two-dimensional images of paramagnetic doped agarose phantoms were obtained, demonstrating the contrast and resolution characteristics of the sequence, and a method for both amplitude and phase deconvolution was demonstrated for use in high-resolution turboSPI imaging. Three-dimensional images of a partially water-saturated porous volcanic aggregate (T(2L) approximately 200 ms, Deltanu(1/2) approximately 2500 Hz) contained in a hardened white Portland cement matrix (T(2L) approximately 0.5 ms, Deltanu(1/2) approximately 2500 Hz) and a water-saturated quartz sand (T(2) approximately 300 ms, T(2)(*) approximately 800 microseconds) are shown.  相似文献   

15.
Clustering strongly affects the transverse (T2) relaxation induced by superparamagnetic nanoparticles in magnetic resonance experiments. In this study, we used Monte Carlo simulations to investigate systematically the relationship between T2 values and the geometric parameters of nanoparticle clusters. We computed relaxation as a function of particle size, number of particles per cluster, interparticle distance, and cluster shape (compact vs. linear). We found that compact clusters induced relaxation equivalent to similarly sized single particles. For small particles, the shape and density of clusters had a significant effect on T2. In contrast, for larger particles, T2 relaxation was relatively independent of cluster geometry until interparticle distances within a cluster exceeded ten times the particle diameter. Results from our simulations suggest principles for the design of nanoparticle aggregation-based sensors for MRI.  相似文献   

16.
The (1)H NMR water signal from spectroscopic voxels localized in gray matter contains contributions from tissue and cerebral spinal fluid (CSF). A typically weak CSF signal at short echo times makes separating the tissue and CSF spin-lattice relaxation times (T(1)) difficult, often yielding poor precision in a bi-exponential relaxation model. Simulations show that reducing the variables in the T(1) model by using known signal intensity values significantly improves the precision of the T(1) measurement. The method was validated on studies on eight healthy subjects (four males and four females, mean age 21 +/- 2 years) through a total of twenty-four spectroscopic relaxation studies. Each study included both T(1) and spin-spin relaxation (T(2)) experiments. All volumes were localized along the Sylvian fissure using a stimulated echo localization technique with a mixing time of 10 ms. The T(2) experiment consisted of 16 stimulated echo acquisitions ranging from a minimum echo time (TE) of 20 ms to a maximum of 1000 ms, with a repetition time of 12 s. All T(1) experiments consisted of 16 stimulated echo acquisition, using a homospoil saturation recovery technique with a minimum recovery time of 50 ms and a maximum 12 s. The results of the T(2) measurements provided the signal intensity values used in the bi-exponential T(1) model. The mean T(1) values when the signal intensities were constrained by the T(2) results were 1055.4 ms +/- 7.4% for tissue and 5393.5 ms +/- 59% for CSF. When the signal intensities remained free variables in the model, the mean T(1) values were 1085 ms +/- 19.4% and 5038.8 ms +/- 113.0% for tissue and CSF, respectively. The resulting improvement in precision allows the water tissue T(1) value to be included in the spectroscopic characterization of brain tissue.  相似文献   

17.
In MR images of porous organic samples (such as roots or wood) in water media, the sample is often surrounded by a bright ring, with a corresponding decreased T1 value in T1 maps. When the medium is removed, or contrast agents are added, the ring disappears, indicating that the signal does not originate in the outer layers of the sample, but from the medium itself. It can be shown that this "bright ring effect" is only observed when the medium experiences a reduction in T1 when permeating the sample. In order to investigate this effect, a computer model was used to simulate the diffusion of magnetisation between regions that exhibit different relaxation constants. Using this model, the origin of the signal increase was found to be an inflow effect, as diffusion transports relaxed magnetisation from the boundary regions of the sample into the surrounding medium. In the case of the "bright ring" around the plants described above, a mixing of short T1 values from within the sample and long T1 values within the medium occurs, yielding a "transition region" between the two values. There, a signal increase can be observed at T1 weighted images, compared to the signal from the medium beyond this transition region. The width of the transition region is on the order of magnitude of the diffusion displacement that is calculated from the T1 value as diffusion time. In addition to causing the bright ring around the plant samples, this diffusion effect also limits the resolution of the relaxation time maps. This effect is not limited to T1 relaxation but also applies to T2 relaxation. However, at high B0 field strengths such as those used in this study (11.7 T), a T2 effect is not usually observed due to the considerably shorter T2 times in plants (about 50 ms, compared to T1 times of higher than 1 s). Because the diffusion length during this T2 relaxation is short with respect to the resolution of the imaging experiments, no T2 ring effect is seen.  相似文献   

18.
Measurements of the magnetic field dependence of spin-lattice relaxation rates and the response of the water-proton signal intensity to off-resonance radio frequency fields show that the commonly used agarose phantom provides a less faithful representation for the magnetic response of tissue than does a cross-linked protein system. The origin of these differences lies in the structure and intramolecular dynamics of the macromolecular system used to make the gel. These distinctions will also cause differences in the magnetic response of the water spin system when paramagnetic relaxation agents or contrast agents are incorporated. Use of a thermally cross-linked bovine serum albumin phantom is suggested.  相似文献   

19.
Magnetic resonance imaging was used to investigate the diffusion and swelling processes of a hydroxypropylmethylcellulose (HPMC) matrix. Polymer in the form of a cylinder was hydrated in a water solvent with pH 2, 7, and 12 at 37 °C and monitored at equal intervals on a Bruker Avance 300 MHz spectrometer. The spatially resolved spin-spin relaxation times and spin densities together with the change in the dimension of the glass core of the polymer were determined for the HPMC tablets as a function of hydration times. FromT 2 parameters, the solvent molecule mobility within the gel layer of the HPMC was estimated. All studied parameters allow the determination of the diffusion of the solvent into the HPMC matrix as Fickian diffusion for alkaline solvents, case II for acidic solvent, and anomalous diffusion for neutral solvent.  相似文献   

20.
In Nuclear Magnetic Resonance (NMR) the image pixel value is governed by at least three major intrinsic parameters: the spin density N (H), the spin-lattice relaxation time T1, and the spin-spin relaxation time T2. The extent to which the signal is weighted toward one or several parameters is related to the history of the spin system preceding detection. On the simplifying, though not generally warranted assumption that the spin density does not vary significantly in soft tissues, relative tissue contrast can be predicted quantitatively provided the relaxation times are known. Signal intensities and contrast were computed on the basis of the Bloch equations and experimentally determined relaxation times as a function of pulse timing parameters and the data compared with those in images recorded at 0.5T field strength. Significant deviations from the equal density hypothesis were found for gray and white substance. Notably partial saturation but also spin echo and inversion-recovery images are not in full accordance with predictions made on the basis of relaxation times alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号