首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider a discrete-time GI/G/1 queueing model with negative arrivals. By deriving the probability generating function of actual service time of ordinary customers, we reduced the analysis to an equivalent discrete-time GI/G/1 queueing model without negative arrival, and obtained the probability generating function of buffer contents and random customer delay.  相似文献   

2.
A controlled single-server retrial queueing system is investigated. Customers arrive according to batch Markovian arrival process. The system has several operation modes which are controlled by means of a threshold strategy. The stationary distribution is calculated. Optimization problem is considered and a numerical example is presented.  相似文献   

3.
A complete distribution for the system content of a discrete-time multi-server queue with an infinite buffer is presented, where each customer arriving in a group requires a deterministic service time that could be greater than one slot. In addition, when the service time equals one slot, a complete distribution for the delay is also presented.  相似文献   

4.
An MMBP/Geo/1 queue with correlated positive and negative customer arrivals is studied. In the infinite-capacity queueing system, positive customers and negative customers are generated by a Bernoulli bursty source with two correlated geometrically distributed periods. I.e., positive and negative customers arrive to the system according to two different geometrical arrival processes. Under the late arrival scheme (LAS), two removal disciplines caused by negative customers are investigated in the paper. In individual removal scheme, a negative customer removes a positive customer in service if any, while in disaster model, a negative customer removes all positive customers in the system if any. The negative customer arrival has no effect on the system if it finds the system empty. We analyze the Markov chains underlying the queueing systems and evaluate the performance of two systems based on generating functions technique. Some explicit solutions of the system, such as the average buffer content and the stationary probabilities are obtained. Finally, the effect of several parameters on the system performance is shown numerically.  相似文献   

5.
In this contribution, a discrete-time single-server infinite-capacity queue with correlated arrivals and general service times is investigated. Arrivals of cells are modelled as an on/off source process with geometrically distributed on-periods and off-periods, which is called Bernoulli bursty source. Based on the probability generating function technique, closed-form expression of some performance measures of system, such as average buffer content, unfinished work, cell delay and so on, are obtained. Finally, the effects of system parameters on performance measures are illustrated by some numerical examples.  相似文献   

6.
This paper examines a discrete-time Geo/G/1 queue, where the server may take at most J − 1 vacations after the essential vacation. In this system, messages arrive according to Bernoulli process and receive corresponding service immediately if the server is available upon arrival. When the server is busy or on vacation, arriving messages have to wait in the queue. After the messages in the queue are served exhaustively, the server leaves for the essential vacation. At the end of essential vacation, the server activates immediately to serve if there are messages waiting in the queue. Alternatively, the server may take another vacation with probability p or go into idle state with probability (1 − p) until the next message arrives. Such pattern continues until the number of vacations taken reaches J. This queueing system has potential applications in the packet-switched networks. By applying the generating function technique, some important performance measures are derived, which may be useful for network and software system engineers. A cost model, developed to determine the optimum values of p and J at a minimum cost, is also studied.  相似文献   

7.
Vijaya Laxmi  P.  Gupta  U.C. 《Queueing Systems》2000,36(1-3):125-140
In this paper, we analyse a multi-server queue with bulk arrivals and finite-buffer space. The interarrival and service times are arbitrarily and exponentially distributed, respectively. The model is discussed with partial and total batch rejections and the distributions of the numbers of customers in the system at prearrival and arbitrary epochs are obtained. In addition, blocking probabilities and waiting time analyses of the first, an arbitrary and the last customer of a batch are discussed. Finally, some numerical results are presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
We consider the problem of finding a heavy and light traffic limits for the steady-state workload in a fluid model having a continuous burst arrival process. Such a model is useful for describing (among other things) the packetwise transmission of data in telecommunications, where each packet is approximated to be a continuous flow. Whereas in a queueing model, each arrival epoch,t n , corresponds to a customer with a service timeS n , the burst model is different: each arrival epoch,t n , corresponds to a burst of work, that is, a continuous flow of work (fluid, information) to the system at rate 1 during the time interval [t n ,t n +S n ]. In the present paper we show that the burst and queueing models share the same heavy-traffic limit for work, but that their behavior in light traffic is quite different.Research supported by the Japan Society for the Promotion of Science, during the author's fellowship in Tokyo.Research funded by C & C Information Technology Research Laboratories, NEC, and the International Science Foundation.  相似文献   

9.
This paper consider the (BMAP1, BMAP2)/(PH1, PH2)/N retrial queue with finite-position buffer. The behavior of the system is described in terms of continuous time multi-dimensional Markov chain. Arriving type I calls find all servers busy and join the buffer, if the positions of the buffer are insufficient, they can go to orbit. Arriving type II calls find all servers busy and join the orbit directly. Each server can provide two types heterogeneous services with Phase-type (PH) time distribution to every arriving call (including types I and II calls), arriving calls have an option to choose either type of services. The model is quite general enough to cover most of the systems in communication networks. We derive the ergodicity condition, the stationary distribution and the main performance characteristics of the system. The effects of various parameters on the system performance measures are illustrated numerically.  相似文献   

10.
11.
Consider a queueing system where customers arrive at a circle according to a homogeneous Poisson process. After choosing their positions on the circle, according to a uniform distribution, they wait for a single server who travels on the circle. The server's movement is modelled by a Brownian motion with drift. Whenever the server encounters a customer, he stops and serves this customer. The service times are independent, but arbitrarily distributed. The model generalizes the continuous cyclic polling system (the diffusion coefficient of the Brownian motion is zero in this case) and can be interpreted as a continuous version of a Markov polling system. Using Tweedie's lemma for positive recurrence of Markov chains with general state space, we show that the system is stable if and only if the traffic intensity is less than one. Moreover, we derive a stochastic decomposition result which leads to equilibrium equations for the stationary configuration of customers on the circle. Steady-state performance characteristics are determined, in particular the expected number of customers in the system as seen by a travelling server and at an arbitrary point in time.  相似文献   

12.
We consider a multi-server retrial queue with the Batch Markovian Arrival Process (BMAP). The servers are identical and independent of each other. The service time distribution of a customer by a server is of the phase (PH) type. If a group of primary calls meets idle servers the primary calls occupy the corresponding number of servers. If the number of idle servers is insufficient the rest of calls go to the orbit of unlimited size and repeat their attempts to get service after exponential amount of time independently of each other. Busy servers are subject to breakdowns and repairs. The common flow of breakdowns is the MAP. An event of this flow causes a failure of any busy server with equal probability. When a server fails the repair period starts immediately. This period has PH type distribution and does not depend on the repair time of other broken-down servers and the service time of customers occupying the working servers. A customer whose service was interrupted goes to the orbit with some probability and leaves the system with the supplementary probability. We derive the ergodicity condition and calculate the stationary distribution and the main performance characteristics of the system. Illustrative numerical examples are presented.  相似文献   

13.
We consider a finite-buffer single server queue with single (multiple) vacation(s) and Markovian arrival process. The service discipline is E-limited with limit variation (ELV). Several other service disciplines like, Bernoulli scheduling, nonexhaustive and E-limited service can be treated as special cases of the ELV service.  相似文献   

14.
We consider a discrete-time Geo/G/1 retrial queue with preemptive resume, collisions of customers and general retrial times. We analyze the Markov chain underlying the considered queueing system and derive its ergodicity condition. Using generating function technique, the system state distribution as well as the orbit size and the system size distributions are studied. Some interesting and important performance measures are obtained. Besides, the stochastic decomposition property is investigated. Finally, some numerical examples are provided.  相似文献   

15.
We investigate a problem of admission control in a queue with batch arrivals. We consider a single server with exponential service times and a compound Poisson arrival process. Each arriving batch computes its expected benefit and decides whether or not to enter the system. The controller’s problem is to set state dependent prices for arriving batches. Once prices have been set we formulate the admission control problem, derive properties of the value function, and obtain the optimal admission policy.  相似文献   

16.
This paper presents the analysis of a discrete-time Geo/G/1Geo/G/1 queue with randomized vacations. Using the probability decomposition theory and renewal process, two variants on this model, namely the late arrival system with delayed access (LAS-DA) and early arrival system (EAS), have been examined. For both the cases, recursive solution for queue length distributions at arbitrary, just before a potential arrival, pre-arrival, immediately after potential departure, and outside observer’s observation epochs are obtained. Further, various performance measures such as potential blocking probability, turned-on period, turned-off period, vacation period, expected length of the turned-on circle period, average queue length and sojourn time, etc. have been presented. It is hoped that the results obtained in this paper may provide useful information to designers of telecommunication systems, practitioners, and others.  相似文献   

17.
This paper is concerned with a discrete-time Geo/G/1 retrial queue with preferred, impatient customers and general retrial times. We analyze the Markov chain underlying the considered queueing system and derive its ergodicity condition. The system state distribution as well as the orbit size and the system size distributions are obtained in terms of their generating functions. These generating functions yield exact expressions for different performance measures. Besides, the stochastic decomposition property and the corresponding continuous-time queueing system are investigated. Finally, some numerical examples are provided to illustrate the effect of priority and impatience on several performance characteristics of the system.  相似文献   

18.
This paper concerns a discrete-time Geo/Geo/1 retrial queue with both positive and negative customers where the server is subject to breakdowns and repairs due to negative arrivals. The arrival of a negative customer causes one positive customer to be killed if any is present, and simultaneously breaks the server down. The server is sent to repair immediately and after repair it is as good as new. The negative customer also causes the server breakdown if the server is found idle, but has no effect on the system if the server is under repair. We analyze the Markov chain underlying the queueing system and obtain its ergodicity condition. The generating function of the number of customers in the orbit and in the system are also obtained, along with the marginal distributions of the orbit size when the server is idle, busy or down. Finally, we present some numerical examples to illustrate the influence of the parameters on several performance characteristics of the system.  相似文献   

19.
We consider an infinite capacity second-order fluid queue with subordinator input and Markovmodulated linear release rate. The fluid queue level is described by a generalized Langevin stochastic differential equation (SDE). Applying infinitesimal generator, we obtain the stationary distribution that satisfies an integro-differential equation. We derive the solution of the SDE and study the transient level's convergence in distribution. When the coefficients of the SDE are constants, we deduce the system transient property.  相似文献   

20.
Based on matrix analytic methods and the theory of Markov regenerative processes, we obtain the stationary distributions of the system size and the waiting time in a multiserver queue into which packets arrive according to a discrete autoregressive process of order 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号