首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the stochastic resonance (SR) of a multi-stable system driven by Lévy noise is investigated by the mean signal-to-noise ratio gain (SNR-GM). The characteristics for resonant output of multi-stable system, governed by the system parameters (a and c), the noise amplification factor D of Lévy noise are investigated under different values of stability index α and asymmetry parameter β of Lévy noise. The results reveal that the parameter α is closer to 1, the amplitude of SNR-GM versus system parameter a (or c) is larger. The interval of SR presents a trend that the curve of SNR-GM shifts to the right with the increase of α especially when α > 1. In addition, the SNR-GM for different values of system parameter a (or c) exhibits a tendency to move to the left with the increase of system parameter c (or a). Finally, the simulation results prove that the proposed multi-stable model has better advantage than bistable system and monostable system in signal enhancement and SNR-GM performance.  相似文献   

2.
In this paper, the tristable stochastic resonance (SR) phenomenon induced by \(\alpha \)-stable noise is analysed. The mechanism for realizing resonance is explored based on research concerning the potential function and resonant output of a system. The rules for resonance system parameters qp, skewness parameter r and intensity amplification factor Q of \(\alpha \)-stable noise to act on the resonant output are explored under different values of stability index \(\alpha \) and asymmetric skewness \(\beta \) of \(\alpha \)-stable noise. The results will contribute to a reasonable selection of parameter-induced tristable SR system parameters under \(\alpha \)-stable noise, and lay the foundation for a practical engineering application of weak signal detection based on the SR.  相似文献   

3.
The mean first-passage time (MFPT) and the weak signal detection method of stochastic resonance (SR) on multi-stable nonlinear system under color correlated noise are studied. Using the uniform color noise approximation method, the Fokker-Planck equation of the system is obtained, and the steady-state probability density function of the multi-stable system driven by the multiplicative noise and additive noise is derived. On the basis of this, the formula of MFPT is derived, and the influence of parameters on the MFPT is analyzed. The problem of weak signal detection under color noise background is studied based on multi-stable SR. The results of simulation and experiment show that the method can effectively extract the frequency feature of weak signal in the background of color noise.  相似文献   

4.
Aiming at the poor detection rate of multi-frequency weak signals under a strong background of noise, a novel method based on adaptive stochastic resonance (SR) theory is proposed in this paper. The optimal parameters can be obtained automatically via measurement by establishing an adaptive SR system model and using the reverse location method. After passing through the adaptive SR system, the spectrum values of all eight signals greatly improve, the largest spectrum value gain increases from 12.41 to 2033 when the frequency is 0.01?Hz, which is an improvement of a factor of 162.8, and the signal-to-noise ratio (SNR) gain of the whole system is 10.3134?dB. Under the condition of different input noise intensities and signal amplitudes, the mean SNR of the system increases from –13.1136 to –2.7614?dB, which is a 78.9% increase, and the largest SNR gain is 13.4702?dB when the noise intensity D?=?1.2 and signal amplitude A?=?0.11. Compared to the single optimal spectrum value, when defining multiple optimum spectrum values as the SNR criterion, the detection sensitivity is less than 0.35 when the input noise intensity is between 0.5 and 2.5, and the sensitivity value is 6.29 times higher when D?=?2.5. The system successfully realizes the adaptive detection of twelve weak signals, and the SNR gain is 7.9743?dB, which improves the channel capacity of signal detection. The experimental results demonstrate the high efficiency and strong applicability of the system, improving the signal processing efficiency and speed of signal transmission.  相似文献   

5.
The phenomenon of stochastic resonance (SR) in a new asymmetric bistable model is investigated. Firstly, a new asymmetric bistable model with an asymmetric term is proposed based on traditional bistable model and the influence of system parameters on the asymmetric bistable potential function is studied. Secondly, the signal-to-noise ratio (SNR) as the index of evaluating the model are researched. Thirdly, Applying the two-state theory and the adiabatic approximation theory, the analytical expressions of SNR is derived for the asymmetric bistable system driven by a periodic signal, unrelated multiplicative and additive Gaussian noise. Finally, the asymmetric bistable stochastic resonance (ABSR) is applied to the bearing fault detection and compared with classical bistable stochastic resonance (CBSR) and classical tri-stable stochastic resonance (CTSR). The numerical computations results show that:(1) the curve of SNR as a function of the additive Gaussian noise and multiplicative Gaussian noise first increased and then decreased with the different influence of the parameters a, b, r and A; This demonstrates that the phenomenon of SR can be induced by system parameters; (2) by parameter compensation method, the ABSR performs better in bearing fault detection than the CBSR and CTSR with merits of higher output SNR, better anti-noise and frequency response capability.  相似文献   

6.
Stochastic resonance (SR) is an important approach to detect weak vibration signals from heavy background noise. In order to increase the calculation speed and improve the weak feature detection performance, a new bistable model has been built. With this model, an adaptive and fast SR method based on dyadic wavelet transform and least square system parameters solving is proposed in this paper. By adding the second-order differential item into the traditional bistable model, noise utilization can be increased and the quality of SR output signal can be improved. The iteration algorithm for implementing the adaptive SR is given. Compared with the traditional adaptive SR method, this algorithm does not need to set up the searching range and searching step size of the system parameters, but only requires a few iterations. The proposed method, discrete wavelet transform and the traditional adaptive SR method are applied to analyzing simulated vibration signals and extracting the fault feature of a rotor system. The contrastive results verify the superiority of the proposed method, and it can be effectively applied to weak mechanical fault feature extraction.  相似文献   

7.
Stochastic resonance (SR) is a vital approach to detect weak signals submerged in strong background noise, which is useful for mechanical fault diagnosis. The underdamped bistable SR (UBSR) is a kind of the most used SR, however, their potential structures are deficient to match with the complicated and diverse mechanical vibration signals and their parameters are selected subjectively which probably resulting in poor performance of UBSR. To overcome these shortcomings, this paper proposes an underdamped SR with exponential potential (UESR) which is generalized by using a harmonic model and a Gaussian potential (GP) model. The dynamics in UESR system is evaluated by the signal-to-noise ratio (SNR) which represents the effectiveness of noise utilization. Then, the effects of system parameters on system performance are investigated by output SNR versus noise intensity D for different parameters. Finally, the proposed method is used to process bearing experimental data and further perform bearing fault diagnosis. The experimental results demonstrate that a larger output SNR and higher spectrum peaks at fault characteristic frequencies can be obtained by the proposed method compared with the UBSR method, which confirm the effectiveness of the proposed method.  相似文献   

8.
Aiming at detecting the weak signal in a strong noise background, an enhanced weak signal detection method based on adaptive parameter-induced tri-stable stochastic resonance is proposed. Firstly, because the system can switch among the monostable, bistable and tri-stable state, the potential function characteristic of tri-stable systems is studied by analyzing the potential function curves with different system parameters. And the dynamic characteristics of system parameters on the depth of the potential well is analyzed. The ranges of R and the system parameters are determined, which is essential for ensuring the system is tri-stable state. Secondly, the range of R is used as the constraint condition and the average output signal-to-noise ratio is used as the fitness function of the adaptive algorithm. The system parameters a, b, c are optimized by the differential evolution particle swarm optimization (DEPSO) method to obtain the best output effect. Finally, the proposed adaptive parameter-induced tri-stable stochastic resonance method is adopted to detect the mixed multiple high-frequency weak signal. The detection results are compared with that of adaptive bistable stochastic resonance. At the meanwhile, the method is also applied to detect the fault signal of single crystal furnace. Both the simulation analysis and experiment results show that the proposed method can effectively improve the output signal-to-noise ratio and detect multi-frequency weak signal in the strong noise background.  相似文献   

9.
王珊  王辅忠 《物理学报》2018,67(16):160502-160502
太赫兹雷达系统在差频信号频谱分析过程中,干扰噪声影响其测距能力.针对上述问题,提出基于自适应随机共振理论的太赫兹雷达信号检测方法,通过对含噪差频信号进行二次采样,利用自适应随机共振系统提取信号,进行尺度恢复完成测距计算.实验数据显示,不同测量距离时,相较于快速傅里叶变换法,输出信噪比的平均增益为9.684 d B,其中测量距离为1000 mm处,差频信号初始频谱值提高了64.1倍,系统信噪比增益为11.761 d B;相较于滤波法,在测量距离为1000 mm处信噪比增益最大,提高了70.56%;输入噪声强度为1—5 V之间时,输出信噪比曲线的曲率相对于滤波法降低了86.5%,其中噪声强度为5 V时信噪比增益最大,为14.018 d B.实验表明太赫兹雷达系统的测距能力大幅提高.  相似文献   

10.
Weak signal detection has been widely used in many fields such as military and national economy. Aiming at the problem that the traditional stochastic resonance (SR) method can’t obtain the signal amplitude when detecting weak signals, the frequency and amplitude of the weak signal are obtained by combining the SR and chaos characteristics of the two-dimensional Duffing system. Firstly, the effects of two-dimensional Duffing system parameters a, b, k, noise intensity D on the Kramers rate and signal-to-noise ratio (SNR) are analyzed under the Gaussian white noise environment. The results show that the damping ratio K can hinder the SR effect of the system to some extent. Secondly, to solve the misjudgment of the state method of the weak signal amplitude in the detection, the Lyapunov exponent is used to assure the threshold's range, and the threshold of the chaotic critical state is found. Finally, the paper gives the processes of frequency and amplitude detection of multiple high-frequency signals, which realizes the effective detection of the frequency and amplitude of multiple high-frequency signals in a Gaussian white noise environment, and successfully applies the method to the accurate detection of boundary voltage amplitude in electrical impedance tomography.  相似文献   

11.
Stochastic resonance(SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise.However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-stable stochastic resonance(CTSSR) model is proposed to further increase the output signal-to-noise ratio(SNR) and improve the detection effect of SR. The effects of parameters a, b, c, and r in the proposed resonance system on the SNR are studied, by which we determine a set of parameters that is relatively optimal to implement a comparison with other classical SR models.Numerical experiment results indicate that this proposed model performs better in weak signal detection applications than the classical ones with merits of higher output SNR and better anti-noise capability.  相似文献   

12.
Gang Zhang 《中国物理 B》2022,31(8):80502-080502
Weak signal detection has become an important means of mechanical fault detections. In order to solve the problem of poor signal detection performance in classical tristable stochastic resonance system (CTSR), a novel unsaturated piecewise linear symmetric tristable stochastic resonance system (PLSTSR) is proposed. Firstly, by making the analysis and comparison of the output and input relationship between CTSR and PLSTSR, it is verified that the PLSTSR has good unsaturation characteristics. Then, on the basis of adiabatic approximation theory, the Kramers escape rate, the mean first-passage time (MFPT), and output signal-to-noise ratio (SNR) of PLSTSR are deduced, and the influences of different system parameters on them are studied. Combined with the adaptive genetic algorithm to synergistically optimize the system parameters, the PLSTSR and CTSR are used for numerically simulating the verification and detection of low-frequency, high-frequency, and multi-frequency signals. And the results show that the SNR and output amplitude of the PLSTSR are greatly improved compared with those of the CTSR, and the detection effect is better. Finally, the PLSTSR and CTSR are applied to the bearing fault detection under Gaussian white noise and Levy noise. The experimental results also show that the PLSTSR can obtain larger output amplitude and SNR, and can detect fault signals more easily, which proves that the system has better performance than other systems in bearing fault detection, and has good theoretical significance and practical value.  相似文献   

13.
基于双稳随机共振系统及滤波器的不同特性,本文提出了一种将两者结合起来检测微弱周期信号的方法,先用自适应前置滤波器对输入的弱周期信号及噪声进行滤波,再使其通过双稳随机共振系统,进而检测出弱信号。对比只有双稳随机共振的系统,仿真结果表明此时的输出信号中待测信号频谱幅度得到了很大的提高,且周围的干扰信号也得到了明显的削弱,即两者的结合使用可以更好的检测出微弱信号,这对强噪声背景下的信号检测有很强的实用性。  相似文献   

14.
三稳系统的动态响应及随机共振   总被引:1,自引:0,他引:1       下载免费PDF全文
赖志慧  冷永刚 《物理学报》2015,64(20):200503-200503
以平衡点参数p, q构造出一类对称三稳势函数, 进而提出微弱信号和噪声共同驱动的三稳系统模型. 深入研究并总结参数p, q对势垒高度ΔU1, ΔU2及两势垒高度差的影响. 从定常输入的角度提出了系统稳态解曲线的概念, 并进一步研究低频谐波信号输入时系统的输出动态响应. 引入噪声, 三稳系统在合适的参数条件下实现随机共振, 从稳态解曲线的角度分析了噪声诱导的三稳系统随机共振机理. 最后研究了阻尼比k和平衡点参数p, q对系统随机共振的影响.  相似文献   

15.
Noise and potential function are vital to stochastic resonance (SR). This paper attempts to broaden the research of the SR and explore a better potential function. Based on the absolute and exponential potentials, a generalized exponential type single-well potential function is constructed. Then the characteristics of the corresponding exponential type single-well SR (ESR) system driven by Levy noise is analyzed numerically. Firstly, the effects of the characteristic index α, symmetric parameter β and noise intensity D of Levy noise on the input signal to noise ratio (SNRi) are investigated. Then, the effects of system parameters a, b, r and noise intensity D on the resonant output is explored. Finally, the ESR system is applied to the fault characteristic extraction of rolling element bearings. The simulation results show that the SR phenomenon is able to be excited by tuning the parameters a, b, r and D under different values of α and β. The larger b (or a) widens the parameter interval of a (or b) which can induce SR. The ESR system is able to solve the problem that the traditional systems fail to achieve SR due to the improper selection of parameters. In bearing fault detection, the detection effect of the ESR system is superior to the bistable SR system.  相似文献   

16.
Stochastic resonance (SR) has been extensively utilized in the field of weak fault signal detection for its characteristic of enhancing weak signals by transferring the noise energy. Aiming at solving the output saturation problem of the classical bistable stochastic resonance (CBSR) system, a double Gaussian potential stochastic resonance (DGSR) system is proposed. Moreover, the output signal-to-noise ratio (SNR) of the DGSR method is derived based on the adiabatic approximation theory to analyze the effect of system parameters on the DGSR method. At the same time, for the purpose of overcoming the drawback that the traditional SNR index needs to know the fault characteristic frequency (FCF), the weighted local signal-to-noise ratio (WLSNR) index is constructed. The DGSR with WLSNR can obtain optimal parameters adaptively, thereby establishing the DGSR system. Ultimately, a DGSR method is proposed and applied in centrifugal fan blade crack detection. Through simulations and experiments, the effectiveness and superiority of the DGSR method are verified.  相似文献   

17.
This Letter explores a new mechanism of stochastic resonance (SR) that is induced by the multi-scale noise decomposed from the input signal, which is promising in signal detection and processing under heavy background noise. The input signal is firstly decomposed to multi-scale signals by orthogonal wavelet transform. Then, the approximate signal, which contains the driving signal, is processed by an uncoupled parallel bistable array with the detailed signal of each scale as the internal noise. At last, a SR mechanism combining the effects of colored noise and array SR is proposed. The simulation results show that a high quality output signal can be obtained by the new mechanism. The proposed model is more adaptive to input signal with high noise intensity than single bistable SR system, which can be seen from the signal-to-noise ratio curves and average noise intensity curves.  相似文献   

18.
In this paper, a new system whose potential function (NWSG) based on the joint of New Woods-Saxon potential function(NWSP) and Gaussian potential function(GP), driven by trichonomous is proposed to optimize the perform in bearing fault diagnosis. Firstly, exploring the influence of various system parameters on the shape of NWSG, besides, presenting a method of numerical simulation for trichotomous noise. The results show that the potential function can convert between three state, which is monostable, bistable, and tristable respectively, under different system parameter values. In addition, the mean of signal-noise ratio increase(MSNRI) is served as the measurement index of stochastic resonance (SR) for periodic signal detection, while traditional SR under optimal parameters. Finally, bearing fault diagnosis is carried out. It is found that the performance of the proposed system is better than traditional system which also verified in the bearing fault diagnosis.  相似文献   

19.
In this paper, we aim to explore the mean extinction rate and the phenomena of the stochastic resonance (SR) for a metapopulation system induced by a multiplicative periodic signal, colored cross-correlated multiplicative and additive Gaussian noises. By use of the fast descent method and the adiabatic approximation theory for the signal-to-noise ratio, we obtain the expression of the signal-to-noise ratio (SNR). Numerical results indicate that the various SR phenomena occur in the metapopulation system due to the variation of the noise terms and the correlation time. Specifically, the noise correlation always plays a critical role in motivating the SR phenomenon, while the multiplicative noise exerts the inhibition effect on the SR. Interestingly, the weak additive noise can stimulate the resonant peak of the SNR, while the further increase of the noise intensity will lead to the reduction of the SR effect. On the other hand, the noise correlation time τ plays antipodal roles in motivating the SR phenomenon under different circumstances. With regard to the mean extinction rate of the population from the boom state to the extinction one, by performing the numerical calculations, it is found that the additive noise always accelerate the extinction of the population, while the correlation noise will slow down the decline for the population. The role that the noise correlation time plays in the population extinction depends on the values that λ takes.  相似文献   

20.
张静静  靳艳飞 《物理学报》2012,61(13):130502-130502
研究了乘性非高斯噪声和加性高斯白噪声共同激励下FitzHugh-Nagumo(FHN) 神经元系统的随机共振问题. 利用路径积分法和两态模型理论, 推导出系统信噪比的表达式. 研究结果表明: 系统参数在不同的取值条件下, FHN神经元模型出现了随机共振和双重随机共振现象. 此外, 非高斯参数q在不同的取值条件下, 乘性噪声强度和加性噪声强度对信噪比的影响是不同的. 非高斯噪声的加入有利于增强FHN神经元系统的信号响应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号