首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive observer is designed for the synchronization of chaotic systems; its stability conditions based on the Lyapunov technique are derived. The observer proportional and integral gains, by converting the conditions into linear matrix inequality (LMI), are optimally selected from solutions that satisfy the observer stability conditions such that the effect of disturbance on the synchronization error becomes minimized. To show the effectiveness of the proposed method, simulation results for the synchronization of a Lorenz chaotic system with unknown parameters in the presence of an exogenous input disturbance and abrupt gain perturbation are reported.  相似文献   

2.
王军威  马庆华  曾丽 《中国物理 B》2011,20(8):80506-080506
Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme.In this paper,a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua’s circuits connected in a drive-response configuration.In particular,in the mixed-synchronization regime,different state variables of the response system can evolve into complete synchronization,anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix.Using Lyapunov stability theory,we derive some sufficient criteria for achieving global mixed-synchronization.It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities (LMIs).Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach.  相似文献   

3.
魏伟  李东海  王京 《中国物理 B》2010,19(4):40507-040507
The synchronization of hyperchaotic Chen systems is considered. An adaptive synchronization approach and a cascade adaptive synchronization approach are presented to synchronize a drive system and a response system. By utilizing an adaptive controller based on the dynamic compensation mechanism, exact knowledge of the systems is not necessarily required, and the synchronous speed is controllable by tuning the controller parameters. Sufficient conditions for the asymptotic stability of the two synchronization schemes are derived. Numerical simulation results demonstrate that the adaptive synchronization scheme with four control inputs and the cascade adaptive synchronization scheme with only one control signal are effective and feasible in chaos synchronization of hyperchaotic systems.  相似文献   

4.
Heng-Hui Chen 《Physics letters. A》2008,372(11):1841-1850
This Letter introduces linear balanced feedback control scheme to design controller for the synchronization of two identical chaotic systems based on Lyapunov stability theory and constrained extreme approach. The technique is applied to synchronizing two identical four-scroll chaotic systems and guiding balanced feedback gains design. In accordance with the result of the analysis, an adaptive control scheme is proposed for chaos synchronization when the parametric variations of the response system are uncertain. The feasibility and effectiveness of the proposed synchronization scheme are verified via numerical simulations.  相似文献   

5.
H.K. Lam 《Physics letters. A》2010,374(4):552-556
This Letter presents the chaos synchronization of two discrete-time generalized Hénon map, namely the drive and response systems. A polynomial controller is proposed to drive the system states of the response system to follow those of the drive system. The system stability of the error system formed by the drive and response systems and the synthesis of the polynomial controller are investigated using the sum-of-squares (SOS) technique. Based on the Lyapunov stability theory, stability conditions in terms of SOS are derived to guarantee the system stability and facilitate the controller synthesis. By satisfying the SOS-based stability conditions, chaotic synchronization is achieved. The solution of the SOS-based stability conditions can be found numerically using the third-party Matlab toolbox SOSTOOLS. A simulation example is given to illustrate the merits of the proposed polynomial control approach.  相似文献   

6.
This paper is concerned with master-slave synchronization for two identical non-autonomous horizontal platform systems by using time-delay feedback control. Compared with some existing results on synchronization for horizontal platform systems, the effect of the time delay in the feedback control on master-slave synchronization is investigated. Applying a delay decomposition approach, some delay-dependent synchronization criteria are established and formulated in the form of linear matrix inequalities (LMIs). Sufficient conditions about the existence of a time delay feedback controller are derived by employing these newly obtained synchronization criteria. The controller gains can be achieved by solving a set of LMIs. One simulation example is given to illustrate the effectiveness of synchronization criteria and the design method.  相似文献   

7.
马铁东  江伟波  浮洁  薛方正 《物理学报》2012,61(10):100507-100507
针对一类整数阶与分数阶超混沌系统的同步问题, 分别提出了改进的脉冲同步方法. 基于Lyapunov稳定性理论与脉冲微分方程理论, 给出超混沌系统一组新的全局渐近同步判据. 特别地, 当脉冲间距与脉冲控制增益为常数时, 可获得更为简单和实用的同步判据. 与现有结果相比, 所得充分条件更次保守且更为实用. 通过对超混沌Chen系统同步的数值仿真研究, 验证了所提方法的有效性和可行性.  相似文献   

8.
马大中  张化光  王占山  冯健 《中国物理 B》2010,19(5):50506-050506
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi--Sugeno (T--S) fuzzy model is employed to represent the chaotic system dynamics. To acquire the good performance and produce less conservative analysis result, a new parameter-dependent Lyapunov--Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.  相似文献   

9.
唐漾  黃偉強  方建安  苗清影 《中国物理 B》2011,20(4):40513-040513
In this paper,the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller,where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller,some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method.  相似文献   

10.
Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov–Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.  相似文献   

11.
12.
基于比较系统方法的分数阶混沌系统脉冲同步控制   总被引:1,自引:0,他引:1       下载免费PDF全文
马铁东  江伟波  浮洁 《物理学报》2012,61(9):90503-090503
针对一类分数阶混沌系统的同步问题, 提出基于比较系统理论的脉冲同步方法. 通过构造新的响应系统, 可将原分数阶同步误差系统转化为整数阶同步误差系统, 基于Lyapunov稳定性理论与脉冲微分方程理论, 给出一组新的分数阶混沌系统全局渐近同步判据. 特别地, 当脉冲间距与脉冲控制增益为常数时, 可获得更为简单和实用的同步判据. 与现有结果相比, 所得充分条件更为严格和实用. 通过对分数阶Chen系统同步问题的数值仿真研究, 验证了所提方法的有效性和可行性.  相似文献   

13.
Synchronization of chaotic systems with different orders   总被引:3,自引:0,他引:3       下载免费PDF全文
吕翎  栾玲  郭治安 《中国物理》2007,16(2):346-351
A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state variables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.  相似文献   

14.
Adaptive synchronization of Rossler and Chen chaotic systems   总被引:3,自引:0,他引:3       下载免费PDF全文
李智  韩崇昭 《中国物理》2002,11(7):666-669
A novel adaptive synchronization method is proposed for two identical Rossler and Chen systems with uncertain parameters. Based on Lyapunov stability theory, we derive an adaptive controller without the knowledge of the system parameters, which can make the states of two identical Rossler and Chen systems globally asymptotically synchronized. Especially, when some unknown uncertain parameters are positive, we can make the controller more simple and, besides, the controller is independent of those positive uncertain parameters. All results are proved using a well-known Lyapunov stability theorem. Numerical simulations are given to validate the proposed synchronization approach.  相似文献   

15.
张若洵  杨世平 《中国物理 B》2012,21(3):30505-030505
We investigate the synchronization of a class of incommensurate fractional-order chaotic systems,and propose a modified adaptive controller for fractional-order chaos synchronization based on the Lyapunov stability theory,the fractional order differential inequality,and the adaptive strategy.This synchronization approach is simple,universal,and theoretically rigorous.It enables the synchronization of0 fractional-order chaotic systems to be achieved in a systematic way.The simulation results for the fractional-order Qi chaotic system and the four-wing hyperchaotic system are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

16.
In this paper, synchronization control of stochastic neural networks with time-varying delays has been considered. A novel control method is given using the Lyapunov functional method and linear matrix inequality (LMI) approach. Several sufficient conditions have been derived to ensure the global asymptotical stability in mean square for the error system, and thus the drive system synchronize with the response system. Also, the estimation gains can be obtained. With these new and effective methods, synchronization can be achieved. Simulation results are given to verify the theoretical analysis in this paper.  相似文献   

17.
In this paper, the adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems with unknown Lipschitz constant is investigated. Firstly, based on the adaptive control theory and the impulsive differential equations theory, the impulsive controller, the adaptive controller and the parametric update law are designed, respectively. Secondly, by constructing the suitable response system, the original fractional-order error system can be converted into the integral-order one. Finally, the new sufficient criterion is derived to guarantee the asymptotical stability of synchronization error system by the Lyapunov stability theory and the generalized Barbalat's lemma. In addition, numerical simulations demonstrate the effectiveness and feasibility of the proposed adaptive impulsive control method.  相似文献   

18.
In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochastic analysis approach and an efficient impulsive delay differential inequality, some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controller not only can globally exponentially stabilize the error dynamics in mean square, but also can control the exponential synchronization rate. Furthermore, to estimate the stable region of the synchronization error dynamics, a novel optimization control algorithm is proposed, which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively. Simulation results finally demonstrate the effectiveness of the proposed method.  相似文献   

19.
浮洁  余淼  马铁东 《中国物理 B》2011,20(12):120508-120508
In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.  相似文献   

20.
In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号