首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The singlet potential‐energy surface (PES) of the system involving the atoms H, X, and E (the (H, X, E) system) in which X=N–Bi and E=C–Pb has been explored at the CCSD(T)/TZVPP and BP86/TZ2P+ levels of theory. The nature of the X? E bonding has been analyzed with charge‐ and energy‐partitioning methods. The calculations show that the linear isomers of the nitrogen systems lin ‐HEN and lin ‐HNE are minima on the singlet PES. The carbon compound lin ‐HCN (HCN=hydrogen cyanide) is 14.9 kcal mol?1 lower in energy than lin ‐HNC but the heavier group 14 homologues lin ‐HEN (E=Si–Pb) are between 64.8 and 71.5 kcal mol?1 less stable than the lin ‐HNE isomers. The phosphorous system (H, P, E) exhibits significant differences concerning the geometry and stability of the equilibrium structures compared with the nitrogen system. The linear form lin ‐HEP of the former system is much more stable than lin ‐HPE . The molecule lin ‐HCP is the only minimum on the singlet PES. It is 78.5 kcal mol?1 lower in energy than lin ‐HPC , which is a second‐order saddle point. The heavier homologues lin ‐HPE , in which E=Si–Pb, are also second‐order saddle points, whereas the bent ‐HPE structures are the global minima on the PES. They are between 10.3 (E=Si) and 36.5 kcal mol?1 (E=Pb) lower in energy than lin ‐HEP . The bent ‐HPE structures possess rather acute bending angles H‐P‐E between 60.1 (E=Si) and 79.7° (E=Pb). The energy differences between the heavier group 15 isomers lin ‐HEX (X=P–Bi) and the bent structures bent ‐HXE become continuously smaller. The silicon species lin ‐HSiBi is even 3.1 kcal mol?1 lower in energy than bent ‐HBiSi . The bending angle H‐X‐E becomes more acute when X becomes heavier. The drastic energy differences between the isomers of the system (H, X, E) are explained with three factors that determine the relative stabilities of the energy minima: 1) The different bond strength between the hydrogen bonds H? X and H? E. 2) The electronic excitation energy of the fragment HE from the X 2Π ground state to the 4Σ? excited state, which is required to establish a E≡X triple bond in the molecules lin ‐HEX . 3) The strength of the intrinsic X? E interactions in the molecules. The trends of the geometries and relative energies of the linear, bent, and cyclic isomers are explained with an energy‐decomposition analysis that provides deep insight into the nature of the bonding situation.  相似文献   

2.
In this study, Pd nanoparticle-modified magnetic Sm2O3–ZrO2 material (Pd–Fe3O4–Sm2O3–ZrO2) as multifunctional catalyst was fabricated and used for catalytic reduction of 2-nitrophenol compound, degradation of methylene blue and rhodamine B dyes, which are toxic pollutants. The magnetic material was used for the first time as a catalyst for the reduction and degradation studies. Pd nanoparticle-modified magnetic Sm2O3–ZrO2 catalyst was prepared using the deposition–precipitation methods and were characterized by X-ray diffraction, scanning electron microscopy, atomic absorption spectrometry, Raman spectroscopy and BET surface analyzer. The Pd nanoparticle-modified magnetic Sm2O3–ZrO2 material can lead to high catalytic activity for the reduction of 2-nitrophenol and degradation of rhodamine B and methylene blue with >?95% conversion within ~?2 and 80 s even when the content of Pd in it is as low as 5.8 wt%.  相似文献   

3.
The synthesis and characterization of graphite oxide (GO), graphene (GS), and the composites: GS–CeO2 and GO–CeO2 are reported. This synthesis was carried out by mixing aqueous solutions of CeCl3·7H2O and GO, which yields the oxidized composite GO–CeO2. GO–CeO2 was hydrothermally reduced with ethylene glycol, at 120 °C, yielding the reduced composite GS–CeO2. GO, GS ,and the composites with CeO2 were characterized by CHN, TG/DTG, BET, XRD, SEM microscopy, FTIR, and Raman spectroscopy. The estimation of crystallite size of CeO2 anchored on GO and on GS by Raman, XRD, and SEM agreed very well showing diameters about 5 nm. The role of particles of CeO2 coating carbon sheets of GO and GS was discussed.  相似文献   

4.
Kaolinite clay obtained from Ubulu-Ukwu, Delta state in Nigeria was modified with polyvinyl alcohol (PVA) reagent to obtain PVA-modified Kaolinite clay adsorbent. Scanning Electron Microscopy (SEM) of the PVA-modified adsorbent suggests that Kaolinite clay particles were made more compact in nature with no definite structure. Modification of Kaolinite clay with PVA increased its adsorption capacity for 300 mg/L Pb2+ and Cd2+ by a factor of at least 6, i.e., from 4.5 mg/g to 36.23 mg/g and from 4.38 mg/g to 29.85 mg/g, respectively, at 298 K. Binary mixtures of Pb2+ and Cd2+ decreased the adsorption capacity of Unmodified Kaolinite clay for Pb2+ by 26.3% and for Cd2+ by 0.07%, respectively. In contrast, for PVA-modified Kaolinite clay, the reductions were up to 50.9% and 58.5% for Pb2+ and Cd2+, respectively. The adsorption data of Pb2+ and Cd2+ onto both Unmodified and PVA-modified Kaolinite clay adsorbents were found to fit the Pseudo-Second Order Kinetic model (PSOM), indicating that adsorption on both surfaces was mainly by chemisorption and is concentration dependent. However, kinetic adsorption data from both adsorbent generally failed the Pseudo-First order Kinetic model (PFOM) test. Extents of desorption of 91% Pb2+ and 94% Cd2+ were obtained, using 0.1 M HCl, for the Unmodified Kaolinite clay adsorbent. It was found that 99% Pb2+ and 97% Cd2+, were desorbed, for PVA-modified Kaolinite clay adsorbents within 3 min for 60 mg/L of the metal ions adsorbed by the adsorbents.  相似文献   

5.
Mesoporous SiO2–TiO2 was synthesized by the sol–gel method using Si(OC2H5)4, Ti(OC2H5)4, and stearyltrimethylammonium chloride. By using acetylacetone as the capping agent of Ti(OC2H5)4, homogeneous SiO2–TiO2 composite was obtained. Spherical mesoporous SiO2–TiO2 was also synthesized by the sol–gel method using W/O emulsion under microwave irradiation. The specific surface area of these mesoporous SiO2–TiO2 materials decreased when the Ti/Si molar ratio was higher than 0.1, which indicated that Ti was homogeneously distributed in mesoporous SiO2 matrix at Ti/Si ≦ 0.1. The photocatalytic activity of mesoporous SiO2–TiO2 materials was investigated by the degradation of methylene-blue in water under UV light irradiation. Mesoporous SiO2–TiO2 was effective for the adsorption–decomposition of methylene-blue.  相似文献   

6.
We report a detailed comparison between RF and microwave (HF) plasmas of N2 and Ar–20 %N2 as well as in the corresponding afterglows by comparing densities of active species at nearly the same discharge conditions of tube diameter (5–6 mm), gas pressure (6–8 Torr), flow rate (0.6–1.0 slm) and applied power (50–150 W). The analysis reveals an interesting difference between the two cases; the length of the RF plasma (~25 cm) is measured to be much longer than that of HF (6 cm). This ensures a much longer residence time (10?2 s) of the active species in the N2 RF plasma [compared to that (10?3 s) of HF], providing a condition for an efficient vibrational excitation of N2(X, v) by (V–V) climbing-up processes, making the RF plasma more vibrationally excited than the HF one. As a result of high V–V plasma excitation in RF, the densities of the vibrationally excited N2(X, v > 13) molecules are higher in the RF afterglow than in the HF afterglow. Destruction of N2(X, v) due to the tube wall is estimated to be very similar between the two system as can be inferred from the γv destruction probability of N2(X, v > 3–13) on the tube wall (2–3 × 10?3 for both cases) obtained from a comparison between the density of N2(X, v > 3–9) in the plasmas to that of the N2(X, v > 13) in the long afterglows. Interestingly enough, densities of N-atoms and N2(A) metastable molecules in the afterglow regions, however, are measured to be very similar with each other. The measured lower density of N2 + ions than expected in the HF afterglow is rationalized from a high oxygen impurity in our HF setup since N2 + ions are very sensitive to oxygen impurity .  相似文献   

7.
Low-agglomerated xerogels, ultrafine oxide powders with particle sizes of 12–20 nm, and uniform thin films with particle sizes of 8–14 nm are prepared in the CeO2–Y2O3 system using liquid-phase low-temperature methods, namely via coprecipitation of hydroxides and cocrystallization of salts, sol—gel technology. A comparative characterization of the prepared xerogels and nanopowders is performed using a set of physicochemical analytical methods. A dependence of phase composition, microstructure, and particle size on synthetic parameters is elucidated.  相似文献   

8.
SiO2–ZrO2 xerogel was prepared via a sol–gel method followed by ambient pressure drying. The xerogel was characterized by X-ray diffraction, thermal analysis, fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption/desorption analysis. The results showed that the SiO2–ZrO2 xerogel was amorphous and possessed a three-dimensional network structure with a narrow distribution of pore size. Its specific surface area reached up to 525.6?m2/g after 600?°C heat treatment, with a pore volume of 1.16?cm3/g and an average pore size of 8.5?nm. In order to explore the potential application of the SiO2–ZrO2 xerogel for the removal of organic dyes, its adsorption capacity was studied by removal of Rhodamine B (RhB) from aqueous solution through batch experiments. The results showed that the adsorption process of RhB onto SiO2–ZrO2 xerogel was slightly promoted under acidic conditions and significantly inhibited under strong alkaline conditions. And adsorption equilibrium can be achieved in 30?min. The kinetic data of the adsorption were analyzed using pseudo-first-order and pseudo-second-order models. The results indicated that the pseudo-second-order model described the adsorption mechanism better. The sorption behavior was evaluated by Langmuir and Freundlich isotherm models. The results suggested that the Langmuir model could accurately describe the experimental data and the adsorption capacity qmax was 177.7?mg/g. Thermodynamic analysis revealed that the adsorption of RhB onto the SiO2–ZrO2 xerogel was both spontaneous and exothermic in nature. Thus, the as-prepared SiO2–ZrO2 xerogel might be used as an adsorbent for wastewater treatment, especially for the removal of dyes.  相似文献   

9.
The development of a method for the separation of 2′-2′-difluorodeoxycytidine (gemcitabine, dFdC), 2′-2′-difluorodeoxyuridine (dFdU) and their mono-, di- and triphosphates using a porous graphitic carbon column (Hypercarb), without ion-pairing agent, is described. The retention of dFdC and dFdU could be controlled with an organic modifier (acetonitrile, CH3CN) and the retention of the anionic nucleotides with an eluting ion (bicarbonate). Separation of all analytes was achieved using a 0–25 mM ammonium bicarbonate gradient in CH3CN–H2O (15:85, v/v). Under these conditions, however, very long re-equilibration times were required. Injection of an acidic solution (100 μL 10% formic acid in H2O, v/v; 2.65 M) after running a gradient directly restored the separation capabilities of the column. Still, separation between the analytes slowly deteriorated over a period of months. These problems were solved by preconditioning the column with a pH buffered hydrogen peroxide (H2O2) solution (0.05% H2O2 in CH3CN–H2O (15:85, v/v), pH 4) before starting an analytical run. The oxidation of the stationary phase with H2O2 prevented its slow reduction, which most likely caused the decreasing retention times. The analytes were detected using tandem mass spectrometry.  相似文献   

10.
CeO2/TiO2 nanocomposite was synthesized by particulate sol–gel method. The X-ray diffractogram shows the presence of cubic CeO2 and anatase TiO2 in the composite. The high resolution scanning electron micrographs reveal the nanoparticulate nature of the prepared composite. The composite absorbs UV light and exhibits near-band gap emission corresponding to TiO2 and deep level emission due to crystal defects. The Nyquist plot displays two semicircular arcs indicating the material heterogeneity. The physicochemical characteristics of the synthesized nanocomposite are in favour of its application as an ingredient of sunscreen formulations; under UV light the photocatalytic activity of CeO2/TiO2 composite, tested through the degradation of rhodamine B, is very much less than that by pristine anatase TiO2. Reduced adsorption of moisture by the nanocomposite is a possible reason for the observed very low photocatalytic activity.  相似文献   

11.
Differential Scanning Calorimetry was used to study phase equilibrium in EuBr2–RbBr binary system. It was established that this system includes two eutectics and three stoichiometric compounds. First of them, Rb2EuBr4, decomposes peritectically at 778 K. Second one, RbEuBr3, undergoes the solid–solid phase transition at 732 K and melts incongruently at 852 K. Third compound, RbEu2Br5, melts congruently at 888 K. The composition and temperature values of eutectics were determined as x(EuBr2) = 0.316; T eut = 776 K and x(EuBr2) = 0.797; T eut = 859 K. Mixing enthalpy was measured by direct calorimetry on the whole composition range. The minimum of the mixing enthalpy occurs around the composition x(EuBr2) ≈ 0.4. The electrical conductivity of liquid mixtures was also investigated over the whole composition range and measured down to temperatures below solidification. The specific conductance (liquid phase) plotted against the mole fraction of EuBr2 shows a broad minimum at x(EuBr2) ~ 0.6. The activation energy for conductivity changes with temperature. Results obtained are discussed in terms of possible complex formation.  相似文献   

12.
The important zinc borate of 2ZnO · 3B2O3 · 3H2O has been synthesized and characterized by means of chemical analysis, XRD, FT-IR, and DTA–TG techniques. The molar enthalpies of solution of H3BO3(s) in HCl · 54.561H2O, of ZnO(s) in the mixture of HCl · 54.561H2O and calculated amount of H3BO3, and of 2ZnO · 3B2O3 · 3H2O(s) in HCl · 54.604H2O were measured, respectively. With the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of ?(5561.7 ± 4.9) kJ · mol?1 for 2ZnO · 3B2O3 · 3H2O(s) was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

13.
14.
The thermal transformations of disubstituted cesium orthophosphate crystal hydrate under heating in air up to 400°C have been studied. The dehydration process occurs in two stages with the loss of 0.6 water molecules at 60?100°C and 1.4 water molecules at 100?160°C. Anhydrous Cs2HPO4 is stable up to 300°C and is completely converted into cesium pyrophosphate Cs4P2O7 at 330°C. The structure of Cs2HPO4 · 2H2O has been determined. The compound crystallizes in monoclinic space group P21/c and has the unit cell parameters a = 7.4761(5) Å, b = 14.2125(8) Å, c = 7.9603(6) Å, β = 116.914(5)°, V = 754.20(9) Å3, and Z = 4 at?123°C. An earlier unknown polymorph of Cs4P2O7 has been found. According to X-ray powder diffraction data, hexagonal space group Р63 has been proposed for the formed pyrophosphate.  相似文献   

15.
To study the role of H-bonds in stabilizing β-peptidic secondary structures, we have synthesized β-oligopeptides (up to the octadecamer 12 ) consisting of β2- and β3-homoproline, i.e., β-peptides lacking amide protons. The enantiomer purity of the building block β2-homoproline (nipecotic acid, 4 ) was determined by HPLC analysis of the N-(2,4-dinitrophenyl) derivative 5 on a Chiralcel-OD column (cf. Fig. 2). The CD spectra of the all-(S)-β2- and all-(S)-β3-HPro-containing β-peptides display novel and intensive CD patterns which may be indicative of a secondary structure (cf. Fig. 3). It is noteworthy that a distinct CD pattern was observed with the β3-HPro derivatives containing as few as three residues ( 7a ). The crystal structure of a N-deprotected β3-HPro-tripeptide 7c is presented (cf. Figs. 4 and 5), and a model for the structure of β-peptides consisting of β3-HPro is discussed (cf. Figs. 6 and 7).  相似文献   

16.
Without using any acid or base catalyst, complexing agent or zirconium alkoxides, ZrO2–SiO2 mixed oxide with the ZrO2 content of 50 mol% was prepared by combination of sol–gel and alcohol-aqueous heating method using zirconyl nitrate and tetraethoxysilane as starting materials. The structural and surface acidic properties were characterized by FT-IR, XRD, NH3-TPD and pyridine adsorption FTIR. Compared with another mixed oxide with the same ZrO2 content prepared by mechanical grinding, the obtained ZrO2–SiO2 mixed oxide was homogeneously mixed in molecular level. The existed Zr–O–Si hetero-linkages strongly retarded the ZrO2 particle growth. The obtained mixed oxide maintained amorphous phase until it was calcined at 1,173 K for 3 h when crystallization of tetragonal zirconia took place. NH3-TPD and pyridine adsorption FTIR showed that both Brønsted and Lewis acidity were largely developed in the mixed oxide and most of the acidic sites belonged to the medium acidity. Because of the existence of abundant medium acidity, the mixed oxide showed catalytic activity for tetrahydrofuran polymerization. Furthermore, the produced poly tetramethylene ether glycol had moderate average molecular weight around 2,000. Neither the pure oxides nor the mixed oxide prepared by the mechanical grinding presented catalytic activity for this reaction.  相似文献   

17.
A lanthanum metal–organic framework, [La(BTC)(H2O)(DMF)] (H3BTC = 1, 3, 5-benzenetricarboxylic acid), was synthesized under mild hydrothermal conditions. The synthesized [La(BTC)(H2O)(DMF)] was characterized by scanning electron microscopy in combination with energy dispersive X-ray spectroscopy (SEM/EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FT-IR). Its electrochemical properties and electrocatalytic activity towards H2O2 reduction in acidic media were studied by cyclic voltammetry (CV) and amperometric current–time response. The [La(BTC)(H2O)(DMF)] modified electrode shows good electrochemical behavior and performs well electrocatalytic activity towards hydrogen peroxide (H2O2) reduction at ca. ?0.7 V. The modified electrode displays a linear range from 5 μM to 2.67 mM and a limit of detection of 0.73 μM to H2O2. The [La(BTC)(H2O)(DMF)] modified electrode also possesses good selectivity and stability. Thus, [La(BTC)(H2O)(DMF)] will be a promising material for non-enzymatic H2O2 sensor.  相似文献   

18.
The Cs2HPO4 · 2H2O single crystals synthesized from an aqueous solution containing equimolar amounts of H3PO4 and Cs2CO3 were studied by impedance and IR spectroscopy, X-ray diffraction analysis, and differential scanning calorimetry (DSC). The IR spectra were analyzed in accordance with the structural data, and the absorption bands were assigned. The proton conductivity was studied at temperatures in the range 20–250°C. The conductivity of dehydrated Cs2HPO4 was low, ~10–5–10–9 S cm–1 at 90–250°C with an activation energy of conductivity E a = 1.1 eV at 130–250°C. The processes determining the character of the temperature dependence of conductivity were consistent with the DSC and thermogravimetry data. According to these data, dehydration of the crystalline hydrate Cs2HPO4 · 2H2O starts at 60°C and occurs in three stages, forming Cs2HPO4 · 1.5H2O below 100°C; anhydrous Cs2HPO4 at t > 160°C, which is stable up to 300°C; and Cs4P2O7 above 330°C.  相似文献   

19.
The thermal desorption of CO, H2, and CH3OH from the surface of Katalco-58 industrial catalyst for the synthesis of methanol and γ-Al2O3 was studied. Weak interaction of the gases with the surface of samples was observed over the temperature range 75–400°C. The desorption of the gases obeyed the second-order Wigner-Polyani equation. The desorption energies of the gases were calculated. The mechanism of dimethyl ether synthesis was studied.  相似文献   

20.
Short interfering RNAs (siRNAs) containing P3′→N5′ phosphoramidate linkages were successfully synthesized by introducing 2′-deoxy-2′-fluororibonucleoside and 5′-amino-2′,5′-dideoxy-2′α-fluororibonucleoside in succession. It was found that the introduction of 5′-amino-2′,5′-dideoxy-2′α-fluororibonucleosides into siRNAs improved the nuclease-resistant properties of the siRNAs without loss of their silencing efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号