首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The synthesis of open‐shell polycyclic hydrocarbons with large diradical characters is challenging because of their high reactivities. Herein, two diindeno‐fused corannulene regioisomers DIC‐1 and DIC‐2 , curved fragments of fullerene C104, were synthesized that exhibit open‐shell singlet ground states. The incorporation of the curved and non‐alternant corannulene moiety within diradical systems leads to significant diradical characters as high as 0.98 for DIC‐1 and 0.89 for DIC‐2 . Such high diradical characters can presumably be ascribed to the re‐aromatization of the corannulene π system. Although the DIC compounds have large diradical characters, they display excellent stability under ambient conditions. The half‐lives are 37 days for DIC‐1 and 6.6 days for DIC‐2 in solution. This work offers a new design strategy towards diradicaloids with large diradical characters yet maintain high stability.  相似文献   

4.
Radical cations of bis(triarylamine)s, 3 and 4 , in which the triarylamine redox centers are bridged by an ortho ‐phenylene and ortho ‐carborane cluster, respectively, have been prepared to elucidate the difference in intramolecular charge/spin‐transfer (ICT/IST) pathway owing to the two different bridging units affording similar geometrical arrangements between the redox centers. Electrochemistry, absorption spectroscopy, VT‐ESR spectroscopy, and DFT calculations reveal that 3 .+ and 4 .+ are classified into class II and class I mixed‐valence systems, respectively, and therefore, through‐bond and through‐space mechanisms are dominant for the ICT/IST phenomena in 3 .+ and 4 .+, respectively. Moreover, SQUID measurements for dicationic species provide the fact that virtually no spin‐exchange interaction is observed for spins in 4 2+, while the antiferromagnetic interaction for spins in 3 2+, in accordance with the existence of a conjugation pathway for the ortho ‐phenylene bridge.  相似文献   

5.
6.
Diindeno‐fused bischrysene, a new diindeno‐based polycyclic hydrocarbon (PH), was synthesized and characterized. It was elucidated in detailed experimental and theoretical studies that this cyclopenta‐fused PH possesses an open‐shell singlet biradical structure in the ground state and exhibits high stability under ambient conditions (t 1/2=39 days). The crystal structure unambiguously shows a novel saddle‐shaped π‐conjugated carbon skeleton due to the steric hindrance of the central cove‐edged bischrysene unit. UV/Vis spectral measurements revealed that the title molecule has a very narrow optical energy gap of 0.92 eV, which is consistent with the electrochemical analysis and further supported by density functional theory (DFT) calculations.  相似文献   

7.
Dibenzo[b,f]arsepins possessing severely distorted cores compared to those of other heteropins were synthesized. These derivatives exhibited dual photoluminescence in the green‐to‐red region (500–700 nm) and the near‐ultraviolet region (<380 nm), which could be attributed to the planarization of the arsepin core in the lowest singlet excited (S1) state. The computational approach for the assessment of the aromatic indices revealed that the dibenzoarsepins studied show aromaticity (8π system) in the S1 states in line with Baird's rule. The lone pair electrons of the arsenic atoms play a crucial role in the aromaticity in the S1 states.  相似文献   

8.
9.
10.
Zinc(II) bis(dipyrrin) complexes, which feature intense visible absorption and efficient symmetry breaking charge transfer (SBCT) are outstanding candidates for photovoltaics but their short lived triplet states limit applications in several areas. Herein we demonstrate that triplet excited state dynamics of bis(dipyrrin) complexes can be efficiently tuned by attaching electron donating aryl moieties at the 5,5′-position of the complexes. For the first time, a long lived triplet excited state (τT=296 μs) along with efficient ISC ability (ΦΔ=71 %) was observed for zinc(II) bis(dipyrrin) complexes, formed via SBCT. The results revealed that molecular geometry and energy gap between the charge transfer (CT) state and triplet energy levels strongly control the triplet excited state properties of the complexes. An efficient triplet–triplet annihilation upconversion system was devised for the first time using a SBCT architecture as triplet photosensitizer, reaching a high upconversion quantum yield of 6.2 %. Our findings provide a blueprint for the development of triplet photosensitizers based on earth abundant metal complexes with long lived triplet state for revolutionary photochemical applications.  相似文献   

11.
Aggregation‐induced emission (AIE) is a photoluminescence phenomenon in which an AIE luminogen (AIEgen) exhibits intense emission in the aggregated or solid state but only weak or no emission in the solution state. Understanding the mechanism of AIE requires consideration of excited state molecular geometry (for example, a π twist). This Minireview examines the history of AIEgens with a focus on the representative AIEgen, tetraphenylethylene (TPE). The mechanisms of solution‐state quenching are reviewed and the crucial role of excited‐state molecular transformations for AIE is discussed. Finally, recent progress in understanding the relationship between excited state molecular transformations and AIE is overviewed for a range of different AIEgens.  相似文献   

12.
A bis(μ‐oxido)dinickel(III) complex was synthesized and characterized by single crystal X‐ray diffraction, resonance Raman, and ESI‐mass measurements. Magnetic susceptibility measurements by SQUID and EPR spectroscopy reveal that the complex has a triplet ground state, which is unprecedented for high‐valent metal (M) complexes with [M2(μ‐O)2] diamond core. DFT studies indicate ferromagnetic coupling of the nickel(III) centers. The complex exhibits hydrogen abstraction reactivity and oxygenation reactivity toward external substrates.  相似文献   

13.
The trapping of a silicon(I) radical with N‐heterocyclic carbenes is described. The reaction of the cyclic (alkyl)(amino) carbene [cAACMe] (cAACMe=:C(CMe2)2(CH2)NAr, Ar=2,6‐i Pr2C6H3) with H2SiI2 in a 3:1 molar ratio in DME afforded a mixture of the separated ion pair [(cAACMe)2Si:.]+I ( 1 ), which features a cationic cAAC–silicon(I) radical, and [cAACMe−H]+I. In addition, the reaction of the NHC–iodosilicon(I) dimer [IAr(I)Si:]2 (IAr=:C{N(Ar)CH}2) with 4 equiv of IMe (:C{N(Me)CMe}2), which proceeded through the formation of a silicon(I) radical intermediate, afforded [(IMe)2SiH]+I ( 2 ) comprising the first NHC–parent‐silyliumylidene cation. Its further reaction with fluorobenzene afforded the CAr−H bond activation product [1‐F‐2‐IMe‐C6H4]+I ( 3 ). The isolation of 2 and 3 confirmed the reaction mechanism for the formation of 1 . Compounds 1 – 3 were analyzed by EPR and NMR spectroscopy, DFT calculations, and X‐ray crystallography.  相似文献   

14.
15.
A luminescent open‐shell organic radical with high chemical stability was synthesized. (3,5‐Dichloro‐4‐pyridyl)bis(2,4,6‐trichlorophenyl)methyl radical (PyBTM) was photoluminescent under various conditions. Fluorescence quantum yields of 0.03, 0.26, and 0.81 (the highest value reported for a stable organic radical) were obtained in chloroform, in poly(methyl methacrylate) film at room temperature, and in an EPA matrix (diethyl ether:isopentane:ethanol) at 77 K, respectively. The photostability of PyBTM is up to 115 times higher than that of the tris(2,4,6‐trichlorophenyl)methyl radical, a previously reported luminescent radical. The pyridine moiety of PyBTM acts as a proton coordination site, thereby allowing for control of the electronic and optical properties of the radical by protonation and deprotonation.  相似文献   

16.
Three position isomers 1,2‐, 1,3‐, 1,4‐phenylenediacetate and 1,4‐bis(benzimidazol‐1‐ylmethyl)benzene (bmb) were used to assembly cadmium(II) coordination polymers, [Cd(bmb)(1,2‐phda)]n ( 1 ), {Cd(bmb)(1,3‐phda)] · 0.5(bmb)}n ( 2 ), and [Cd(bmb)0.5(1,4‐phda)]n ( 3 ), which are characterized by elemental analyses, infrared spectra (IR), thermogravimetric analysis (TGA) and single‐crystal X‐ray diffraction. Single crystal structure analysis shows that complex 1 is a two‐dimensional wave‐like layer network. Complex 2 features a (3,5)‐connected three‐dimensional frameworks with (42.6)(42.65.83) topology, whereas complex 3 shows a (4,4)‐connected three‐dimensional (4.64.7)(42.62.82) topology. The structural versatility reveals that a significant structure‐directing effect of the position of the acetate groups during self‐assembly of these coordination polymers. Moreover, luminescent properties and thermal stabilities of three complexes were discussed in detail.  相似文献   

17.
18.
Carbon‐bridged bis(aminoaryl) oligo(para ‐phenylenevinylene)s have been prepared and their optical, electrochemical, and structural properties analyzed. Their radical cations are class III and class II mixed‐valence systems, depending on the molecular size, and they show electronic couplings which are among the largest for the self‐exchange reaction of purely organic molecules. In their dication states, the antiferromagnetic coupling is progressively tuned with size from quinoidal closed‐shell to open‐shell biradicals. The data prove that the electronic coupling in the radical cations and the singlet–triplet gap in the dications show similar small attenuation factors, thus allowing charge/spin transfer over rather large distances.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号