首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two types of hybrid acrylic nanoparticles based on biodegradable and biocompatible polymers, cellulose ester and poly(ε-caprolactone), were produced via miniemulsification through high-pressure homogenization. An efficient emulsification procedure was first devised to yield high-solids-content polymer–monomer waterborne miniemulsions, and the fundamental parameters governing the stability of these composite miniemulsions were assessed. In addition, strategies to control the droplet size were investigated upon varying several experimental parameters such as the interfacial tension between the organic and the aqueous phase, the organic phase viscosity and the nature/concentration of surfactant. A series of thermally initiated polymerizations were then performed to produce nanosized hybrid particles.  相似文献   

3.
李慧慧 《高分子科学》2014,32(9):1119-1127
The intermolecular interaction between poly(vinylphenol) (PVPh) and polycaprolactone (PCL) and the crystallization behavior of PCL in PCL/PVPh blends with different compositions and under different conditions were investigated by Fourier transform infrared spectra (FTIR) and differential scanning calorimetry (DSC). It has been shown that the PCL in the blends with different blend ratios all exists in crystalline state after solution casting, even though the crystallinity decreases with increasing PVPh content. For the melt crystallized samples, PCL in its 80/20 PCL/PVPh sample can still crystallize. The crystallinity is, however, lower than that of the solution cast sample. For blends containing 50% or 20% PCL, the as-cast samples are semicrystalline and can change to compatible amorphous state after heat treatment process. FTIR analysis shows the existence of hydrogen bonding between PCL and PVPh and the fraction of hydrogen bonds increases remarkably after heat treatment process.  相似文献   

4.
A selenium-functionalizedε-caprolactone was synthesized by introducing a phenyl selenide group at the 7-position.A polymer was obtained through the ring-opening polymerization of this monomer in a base/thiourea binary organocatalytic system.A living polymerization process was achieved under mild conditions.The resulting polymers had a controlled molecular weight with a narrow molecular weight distributions and high end-group fidelity.Random copolymers could be obtained by copolymerizing this monomer withε-caprolactone.The thermal degradation temperature of the obtained copolymers decreased with the increasing molar ratio of selenide functionalized monomer in copolymers,while the glass transition temperature increased.In addition,the phenyl selenide side group could be further modified to a polyselenonium salt,which resulted in a polymer with good antibacterial properties.The survival rate of E.coli and S.aureus was only 9%with a polymer concentration of 62.5μg/mL.  相似文献   

5.
In this contribution, we reported a novel synthesis of block copolymer networks composed of poly(ε-caprolactone)(PCL) and polyethylene(PE) via the co-hydrolysis and condensation of α,ω-ditriethoxylsilane-terminated PCL and PE telechelics. First, α,ω-dihydroxylterminated PCL and PE telechelics were synthesized via the ring-opening polymerization of ε-caprolactone and the ring-opening metathesis polymerization of cyclooctene followed by hydrogenation of polycyclooctene. Both α,ω-ditriethoxylsilane-terminated PCL and PE telechelics were obtained via in situ reaction of α,ω-dihydroxyl-terminated PCL and PE telechelics with 3-isocyanatopropyltriethoxysilane. The formation of networks was evidenced by the solubility and rheological tests. It was found that the block copolymer networks were microphase-separated. The PCL and PE blocks still preserved the crystallinity. Owing to the formation of crosslinked networks, the materials displayed shape memory properties. More importantly, the combination of PCL with PE resulted that the block copolymer networks had the triple shape memory properties, which can be triggered with the melting and crystallization of PCL and PE blocks. The results reported in this work demonstrated that triple shape memory polymers could be prepared via the formation of block copolymer networks.  相似文献   

6.
With adjustable amphiphilicity and anionic/cationic charge, biodegradability and biocompatibility, amino acid-based poly(ester amide)s(PEAs) have drawn attention in the research of tissue engineered vascular grafts. In this work, L-phenylalanine-based PEAs with or without L-lysine were synthesized through polycondensation, and ultrafine fibrous grafts consisted of PEAs and poly(ε-caprolactone)(PCL) in given mass ratios were further prepared via blend electrospinning. Surface characterizations by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the chemical structure, and the wettability indicated that the prepared PCL/PEAs electrospun membranes exhibited less hydrophobic than PCL. Tensile results showed that the PCL/PEAs membranes possessed suitable mechanical properties, which could meet the requirements of artificial blood vessels. Cell culture and hemolytic tests exhibited that the PCL/PEAs electrospun membranes are biocompatible. In general, the electrospun grafts of PCL/PEAs could be applied for vascular repair.  相似文献   

7.
Our conceived approach based on the directed assembly of functional metal–organic squares (MOSs), 4-membered ring (4MR) building units, permitted the construction of two novel zeolite-like supramolecular assemblies (ZSAs), namely [Co4(ImDC)4(En)4]⋅9 H2O⋅1.5 DMF ( ZSA-10 ) and [Co4(ImDC)4(En)4]⋅7 H2O ( ZSA-11 ) (H3ImDC=4,5-imidazoledicarboxylic acid, En=ethylenediamine, DMF=N,N-dimethylformamide). The elected MOSs encompass both trans- and cis-coordinated nodes, offering complementary peripheral functional groups for their directed assembly into zeolite-like topologies via supramolecular hydrogen bonding interactions. Distinctly, ZSA-10 possesses the underling MER zeolite topology and is the only pure MER framework material (without any supporting templates) exhibiting permanent porosity up to now. ZSA-11 has the underlying ABW topology together with one type of narrow channel.  相似文献   

8.
Summary: This study reported the preparation and characterization of PCL-b-mPEG (poly(ε-caprolactone)-block-poly(ethylene glycol)) and PLL-b-mPEG (poly(L-lactide)-block-poly(ethylene glycol)) diblock copolymers by microwave heating and comparison of resulted products the ones with prepared by conventional heating. Diblock copolymers were synthesized successfully by the microwave-assisted ROP in the presence of stannous octoate (SnOct2) as catalyst under nitrogen atmosphere in different monomer ratios. Structural and functional characterization of copolymers were performed by FTIR, 1H-NMR and DSC. Molecular weight values were determined by GPC and also calculated from 1H-NMR. According to the results, microwave irradiation allowed to obtain polymers with very narrow size distribution in very short reaction time. Similar polymers prepared by conventional heating were also synthesized for comparison. Molecular weight and conversion of polymers were increased by irradiation time. This change was continued until a certain time point after which no more increase was observed. It was concluded that microwave irradiation is a succesful method to obtain these diblock copolymers in very short reaction time and with a similar conversion obtained by conventional method.  相似文献   

9.
10.
Synthesis, characterization and behavior at the air-water interface of A-B-A triblock copolymers are reported. The copolymers consist of a poly(ethylene oxide) central block and poly(ε-caprolactone) lateral blocks. The synthesis was controlled in order to obtain central and lateral blocks of variable length. Copolymer characterization was performed by FTIR and 1H NMR spectroscopy, size exclusion chromatography (SEC), and thermal analysis. Monolayers of the copolymers at the air-water interface were obtained by the Langmuir technique and the respective isotherms were obtained by monolayer compression. The limiting area per repeat unit (Ao) and the critical exponent of the excluded volume (ν) for spread monolayers were obtained. The static elasticity (ε0) of the monolayers was also determined. The obtained results allow proposing a schematic model of the orientation of the different blocks during the compression of the respective monolayers.  相似文献   

11.
In this study poly(ε-caprolactone) – calcium-carbonate composites were obtained by melt-mixing. Two crystal-modifications of calcium-carbonate were used, namely calcite and aragonite. Compressive and tensile tests were executed on samples with various compositions to analyze the effect of filler content and particle geometry. Both minerals improved the compressive modulus and strength significantly, however the influence of calcite was superior. The tensile modulus was also highly increased. The elongation at break remained high even at 50 wt% aragonite filling, but decreased with two orders in the case of calcite. Biocompatibility tests were also carried out with human osteoblast cells and the results were promising. The relative cell number increased due to calcium-carbonate. Both filler material is able to enhance the mechanical and biological properties of poly(ε-caprolactone) significantly. Aragonite samples remained more ductile compared to calcite ones, but the calcite filled scaffolds are stiffer, stronger and slightly more biocompatible than aragonite filled materials.  相似文献   

12.
Poly(lactic acid)(PLA) is a promising bio-based environmentally-friendly plastic. Nevertheless, the physical aging-induced brittleness of PLA limits its widespread applications. Blending with immiscible ductile polymer is an effective way to toughen PLA. However, the underlying details of the toughening mechanism and, in particular, the effect of physical aging are not well understood. Herein, atomic force microscopy(AFM) based nanomechanical mapping technology was utilized to visualize the diff...  相似文献   

13.
A new La(Ⅲ) complex, {[La(L)(NO3)(H2O)3]·H2O}n (L = 1,10-phenanthroline- 2,9-dicarboxylate), has been synthesized and structurally determined by X-ray diffraction analysis. The complex crystallizes in the monoclinic system, space group P21/c with a = 7.7358(17), b = 8.1664(18), c = 28.271(6) , β = 95.184(4)°, V = 1778.6(7)3, Z = 4, C14H14LaN3O11, Mr = 539.19, Dc = 2.014 g/cm3, μ = 2.471 mm–1, F(000) = 1056, the final R = 0.0350 and wR = 0.0659. In this complex, each metal center adopts a ten-coordination geometry formed by two N atoms from a ligand L and eight O atoms from three H2O molecules, a nitrate ion and carboxylates of two ligands. Each ligand adopts a N2,O3-pentdentate coordination mode using two N and two O atoms chelating a La(III), and using another O atom of carboxylate to bridge another La(III) center resulting in a 1D helical chain molecule. Intermolecular strong O–H···O and weak C–H···O hydrogen bonds extend the 1D chain structure into a 3D supramolecular architecture.  相似文献   

14.
Blends of chitosan and poly(ε-caprolactone-co-2-oxepane-1,5-dione) (PCO) were fabricated by solvent casting technique using 77% acetic acid as the cosolvent. The interactions between chitosan and PCO were analyzed by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and differential scanning calorimetry. The miscibility became poorer with increase of PCO from 50% to 75%, which was supported by the Flory–Huggins interaction parameter and crystallinity of PCO. According to X-ray pattern, crystallinity of CS became weaker when PCO content was improved. Results indicated that there existed stronger interactions in comparison with PCL/CS blends. Therefore, the addition of functional polyester PCO made the brittle chitosan ductile. The elongation was significantly prolonged to 21.60 ± 4.92% with the break stress maintaining about 32 MPa, better than that of PCL blends. The degradation behavior showed slower degradation rate compared with pure CS and the morphology was illustrated by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

15.
Poly(ε-caprolactone) (PCL)/cellulose nanocrystal (CNC) nanocomposites were produced via twin-screw extrusion. Microcellular nanocomposite samples were produced with microcellular injection molding using carbon dioxide (CO2) as physical blowing agent. The foaming behavior, physical properties, thermal properties, crystallization behavior, and biocompatibility were investigated. It was found that the CNCs interacted with the PCL matrix which led to a strong interface. The CNCs effectively acted as nucleation agents in microcellular injection molding. Both solid and foamed samples with higher levels of CNC content showed higher tensile moduli, complex viscosities, and storage moduli due to the reinforcement effects of CNCs. Furthermore, improvement in the foamed samples was more significant due to their fine cell structure. The addition of CNCs caused a reduction of the decomposition temperature and an increase in the glass transition temperature, crystallization temperature, and crystallinity of PCL. Moreover, the biocompatibility of the foamed nanocomposites with low CNC content was verified by 3T3 fibroblast cell culture.  相似文献   

16.
Summary: The thermal degradation behavior of poly(ε-caprolactone) (PCL) and poly(L-lactic acid) (PLA) have been studied in different environment. It was found that these polymers undergo completely different degradation processes in nitrogen and oxygen atmosphere. In oxygen environment PCL and PLA mainly decompose to CO2, CO, water and short-chain acids. In nitrogen atmosphere PCL releases 5-hexenioc acid, CO2, CO and ε-caprolactone, whereas PLA decomposes to acetaldehyde, CO2, CO and lactide. The polymer blends of poly(3-hydroxybutyrate) (PHB) with PCL and PLA decompose similar to the individual homopolymers with crotonic acid as the initial decomposition product of PHB.  相似文献   

17.
Surface derivatization is essential for incorporating unique functionalities into biodegradable polymers. Nonetheless, its precise effects on enzymatic biodegradation still lack comprehensive understanding. In this study, a facile solution-based method is employed to surface derivatize poly(ε-caprolactone) films and electrospun fibers with lysozyme, aiming to impart antimicrobial properties and examine the impact on enzymatic degradation. The derivatized films and fibers have shown high antibacterial efficacy against Escherichia coli and Staphylococcus aureus. Through gravimetric analysis, it is observed that the degradation rate experiences a slight decrease upon lysozyme derivatization. However, this reduction is effectively countered by the inclusion of Tween-20, as affirmed by isothermal titration calorimetry. Comparing films and fibers, the latter undergoes degradation at a more accelerated pace, coupled with a rapid decline in molecular weight. This study provides valuable insights into the factors influencing the degradation of surface-derivatized biopolymers through electrospinning, offering a simple strategy to mitigate biomaterial-associated infections.  相似文献   

18.
Two octaisobutyl-polyhedral oligomeric silsesquioxanes(oib-POSS)reinforced biodegradable poly(ε-caprolactone)(PCL)composites were prepared via two different methods,i.e.,melt compounding and solution casting,which were named as m PCL/oib-POSS and s PCL/oibPOSS,respectively,in this work.Oib-POSS dispersed finely in both composites;moreover,oib-POSS aggregates were larger in m PCL/oib-POSS than in s PCL/oib-POSS.Despite the different preparation methods,oib-POSS obviously promoted the crystallization of PCL,especially in s PCL/oib-POSS,but did not modify the crystal structure of PCL.The storage moduli of PCL were improved significantly in both composites.PCL/oib-POSS composites with enhanced crystallization behavior and improved dynamic mechanical properties were successfully prepared through both methods;moreover,the solution casting method was more effective than the melt compounding method.  相似文献   

19.
IntroductionSecondarybondingssuchashydrogenbondsandπ πinteractionsareimportantnon covalentintermolecularforces ,1whichcontributetoself assemblyprocesseswhenextendedstructuresareformedfromsimpleprecursors .Recentlymuchattentionhasbeenpaidtothehydrogenbond…  相似文献   

20.
Dielectric relaxation spectroscopy(DRS) of poly(ε-caprolactone) with different draw ratios showed that the mobility of polymer chains in the amorphous part decreases as the draw ratio increases. The activation energy of the α process, which corresponds to the dynamic glass transition, increases upon drawing. The enlarged gap between the activation energies of the α process and the β process results in a change of continuity at the crossover between the high temperature a process and the α and β processes. At low drawing ratios the a process connects with the β process, while at the highest drawing ratio in our measurements, the a process is continuous with the αprocess. This is consistent with X-ray diffraction results that indicate that upon drawing the polymer chains in the amorphous part align and densify upon drawing. As the draw ratio increases, the α relaxation broadens and decreases its intensity, indicating an increasing heterogeneity. We observed slope changes in the α traces, when the temperature decreases below that at which τα≈ 1 s. This may indicate the glass transition from the ‘rubbery' state to the non-equilibrium glassy state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号