首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 703 毫秒
1.
控制纳米电子器件的p型传输仍然是降低肖特基势垒的主要挑战。为了解决这个问题,采用半经验色散校正方案的第一性原理,系统研究了不同浓度的O原子吸附掺杂对蓝磷/石墨烯异质结构层间相互作用和电子性质的影响。结果表明,异质结界面内的O原子吸附可以增强界面结合。并通过改变界面内O原子吸附浓度来调节p型肖特基势垒的高度。进一步发现,通过增加界面内O原子的吸附浓度,可以降低p型肖特基势垒的高度,从而实现高效的电荷转移。最后,界面电荷的重新分布会导致费米能级的移动,而费米能级决定了肖特基势垒的高度。  相似文献   

2.
本文基于第一性原理方法,系统研究了外电场对石墨烯/MoS2范德瓦耳斯异质结界面相互作用及其电子性质的影响.计算结果表明石墨烯和MoS2之间通过微弱的范德瓦耳斯力结合形成异质结,石墨烯/MoS2异质结的能带基本上是单层石墨烯和单层MoS2能带结构的简单叠加并形成了N型肖特基势垒;由于异质结的石墨烯层的电子向MoS2层转移,导致石墨烯表面带正电,MoS2表面带负电,在异质结内部形成了方向由石墨烯指向MoS2的内建电场.此外,对异质结施加不同强度的负电场时,体系的接触类型逐渐由N型肖特基接触类型转变为欧姆接触;对异质结施加不同强度的正电场时,体系的P型肖特基势垒呈降低趋势,体系的N型肖特基势垒呈现先缓慢升高再急剧下降的特点,在电场强度提高至5.0 V·nm-1附近时,接触类型由N型肖特基接触转变为P型肖特基接触.此项工作将对相关二维场效应晶体管的设计提供参考.  相似文献   

3.
采用密度泛函理论(DFT)研究了氧吸附后Pt/Cu(001)表面合金的原子结构和表面性质.计算结果表明,在Pt/Cu(001)-p(2×2)-O表面最稳定结构中,衬底表面原子层不发生再构,氧原子吸附于4重对称的Pt原子谷位,每个氧原子吸附能约为2.303 eV.吸附结构的Cu—O和Pt—O键键长分别为0.202和0.298 nm,氧原子的吸附高度ZCu—O约为0.092 nm.吸附前后Pt/Cu(001)-1ML(monolayer)表面合金的表面功函数分别为4.678和5.355 eV.吸附表面氧原子和衬底的结合主要来自氧原子2p轨道和衬底金属原子d轨道的杂化作用,氧原子吸附形成的表面电子态主要位于费米能级以下约-2.7 eV处.  相似文献   

4.
韩穗奇  李佳  杨凯伦  林隽 《催化学报》2015,(12):2119-2126
窄带半导体氧化铋(Bi2O3,带宽介于2.1-2.8 eV)因其强的可见光吸收和无毒性等特性而一直被认为是潜在的可见光催化材料.通常, Bi2O3具有a,b,g,d,e和w等六种晶型,其中,a,b和d-Bi2O3具有催化可见光降解有机物的活性.可是,由于其光生电子-空穴复合较快, Bi2O3的光催化活性还很低,远不够实际应用.将半导体与另一种物质如贵金属或其他半导体复合形成异质结是一种有效控制光生电子-空穴复合,提高光催化活性的方法.目前已成功开发了许多Bi2O3基的异质结光催化材料.尤其是通过用卤化氢酸与a-Bi2O3直接作用原位形成的a-Bi2O3与铋的卤氧化合物BiOX (X = Cl, Br或I)的异质结在提高光催化活性和制备方面显示了优越性.然而,具有更强可见光吸收的b-Bi2O3(带宽约2.3 eV)与卤氧化合物的异质结光催化性能却鲜有报道.本文通过用HI原位处理b-Bi2O3形成b-Bi2O3/BiOI异质结.该异质结表现较纯b-Bi2O3和BiOI更高的降解甲基橙(MO)可见光催化活性.通过多晶X射线衍射(XRD)、紫外漫散射(UV-DRS)、扫描电镜、透射电镜(TEM)、X光电子能谱(XPS)和荧光(PL)等手段研究了b-Bi2O3/BiOI异质结,并提出其高催化活性的机理. XRD结果显示,用HI原位处理b-Bi2O3可形成BiOI相,并且随着HI使用量增加,混合物中的BiOI相逐渐增多. HRTEM结果进一步表明,在混合物中的b-Bi2O3和BiOI都是高度结晶态,且两相之间有很好的接触,从而有利于两相之间的电荷移动.根据UV-DRS和ahv =A(hv –Eg)n/2等公式,计算出了b-Bi2O3和BiOI带隙分别为2.28和1.77 eV,以及两种半导体的导带和价带位置. b-Bi2O3的导带和价带位置分别为0.31和2.59 eV,而BiOI的导带和价带位置分别为0.56和2.33 eV.这样两种半导体能带结构呈蜂窝状,显然不适合光生电子-空穴的分离.然而, XPS测定结果显示,b-Bi2O3和BiOI相互接触形成异质结后,b-Bi2O3相的电子向BiOI相发生了明显的移动.根据文献报道,当两种费米能级不同的半导体接触时,电子会从费米能级高的半导体移向费米能级低的半导体,直至建立新的费米能级.b-Bi2O3被报道是典型的n型半导体,其费米能级在上靠近其导带位置;而BiOI是典型的p型半导体,其费米能级在下靠近其价带位置.基于此,我们提出了b-Bi2O3/BiOI异质结高催化活性的机理.当b-Bi2O3与BiOI形成异质结时,由于b-Bi2O3的费米能级较BiOI的高,因而电子从b-Bi2O3转向BiOI,直至新的费米能级形成.因此电子在两相之间移动导致了b-Bi2O3能带结构整体下移,以及BiOI能带结构整体上移,使得新形成的BiOI导带和价带位置高于b-Bi2O3的.当该异质结在可见光的照射下,光生电子将移至b-Bi2O3的导带,而空穴会移至BiOI的价带,最终达到了光生电子-空穴分离的效果,产生高的光催化活性. PL测试也证实了b-Bi2O3/BiOI异质结具有更长的光生电子-空穴寿命.  相似文献   

5.
采用密度泛函理论(DFT)研究了氧吸附后Pt/Cu(001)表面合金的原子结构和表面性质. 计算结果表明, 在Pt/Cu(001)-p(2×2)-O表面最稳定结构中, 衬底表面原子层不发生再构, 氧原子吸附于4重对称的Pt原子谷位, 每个氧原子吸附能约为2.303 eV. 吸附结构的Cu—O和Pt—O键键长分别为0.202和0.298 nm, 氧原子的吸附高度ZCu—O约为0.092 nm. 吸附前后Pt/Cu(001)-1ML(monolayer)表面合金的表面功函数分别为4.678和5.355 eV. 吸附表面氧原子和衬底的结合主要来自氧原子2p轨道和衬底金属原子d轨道的杂化作用, 氧原子吸附形成的表面电子态主要位于费米能级以下约-2.7 eV 处.  相似文献   

6.
本文基于密度泛函理论对TiO_2(101)和Mn_xTi_(1-x)O_2(101)作为锂空电池阴极催化材料进行了研究,发现其表面能够生成两种不同结构的Li_2O_2,进一步地研究了其中最稳定的生成结构并通过计算锂空电池首次充放电过程中的过电势来评价催化性能.结果表明,Mn掺杂进入Ti O_2(101)对充放电的过电势均有降低作用,深入分析发现掺杂Mn对TiO_2促进阴极催化反应的本质因素源于掺杂原子Mn的d态轨道的分布以及其平均能量.掺杂原子的d态轨道在费米能级处的峰态诱导了附近O的p态轨道,二者共同作用在Mn_xTi_(1-x)O_2(101)的总态密度的费米能级处形成多个新峰,改变了催化剂的导电方式.此外,由于掺杂原子Mn的d态轨道的平均能量高于Ti原子,使得O的p态轨道受到更多的激发,促使在Mn掺杂原子附近的氧空位形成能降低,为放电过程阴极催化反应的氧还原提供了更多的活性位点并且有利于氧气的吸附与还原.  相似文献   

7.
窄带半导体氧化铋(Bi2O3,带宽介于2.1-2.8 e V)因其强的可见光吸收和无毒性等特性而一直被认为是潜在的可见光催化材料.通常,Bi2O3具有α,β,γ,δ,ε和ω等六种晶型,其中,α,β和δ-Bi2O3具有催化可见光降解有机物的活性.可是,由于其光生电子-空穴复合较快,Bi2O3的光催化活性还很低,远不够实际应用.将半导体与另一种物质如贵金属或其他半导体复合形成异质结是一种有效控制光生电子-空穴复合,提高光催化活性的方法.目前已成功开发了许多Bi2O3基的异质结光催化材料.尤其是通过用卤化氢酸与α-Bi2O3直接作用原位形成的α-Bi2O3与铋的卤氧化合物Bi OX(X=Cl,Br或I)的异质结在提高光催化活性和制备方面显示了优越性.然而,具有更强可见光吸收的β-Bi2O3(带宽约2.3 e V)与卤氧化合物的异质结光催化性能却鲜有报道.本文通过用HI原位处理β-Bi2O3形成β-Bi2O3/Bi OI异质结.该异质结表现较纯β-Bi2O3和Bi OI更高的降解甲基橙(MO)可见光催化活性.通过多晶X射线衍射(XRD)、紫外漫散射(UV-DRS)、扫描电镜、透射电镜(TEM)、X光电子能谱(XPS)和荧光(PL)等手段研究了β-Bi2O3/Bi OI异质结,并提出其高催化活性的机理.XRD结果显示,用HI原位处理β-Bi2O3可形成Bi OI相,并且随着HI使用量增加,混合物中的Bi OI相逐渐增多.HRTEM结果进一步表明,在混合物中的β-Bi2O3和Bi OI都是高度结晶态,且两相之间有很好的接触,从而有利于两相之间的电荷移动.根据UV-DRS和αhv=A(hv–Eg)n/2等公式,计算出了β-Bi2O3和Bi OI带隙分别为2.28和1.77 e V,以及两种半导体的导带和价带位置.β-Bi2O3的导带和价带位置分别为0.31和2.59 e V,而Bi OI的导带和价带位置分别为0.56和2.33 e V.这样两种半导体能带结构呈蜂窝状,显然不适合光生电子-空穴的分离.然而,XPS测定结果显示,β-Bi2O3和Bi OI相互接触形成异质结后,β-Bi2O3相的电子向Bi OI相发生了明显的移动.根据文献报道,当两种费米能级不同的半导体接触时,电子会从费米能级高的半导体移向费米能级低的半导体,直至建立新的费米能级.β-Bi2O3被报道是典型的n型半导体,其费米能级在上靠近其导带位置;而Bi OI是典型的p型半导体,其费米能级在下靠近其价带位置.基于此,我们提出了β-Bi2O3/Bi OI异质结高催化活性的机理.当β-Bi2O3与Bi OI形成异质结时,由于β-Bi2O3的费米能级较Bi OI的高,因而电子从β-Bi2O3转向Bi OI,直至新的费米能级形成.因此电子在两相之间移动导致了β-Bi2O3能带结构整体下移,以及Bi OI能带结构整体上移,使得新形成的Bi OI导带和价带位置高于β-Bi2O3的.当该异质结在可见光的照射下,光生电子将移至β-Bi2O3的导带,而空穴会移至Bi OI的价带,最终达到了光生电子-空穴分离的效果,产生高的光催化活性.PL测试也证实了β-Bi2O3/Bi OI异质结具有更长的光生电子-空穴寿命.  相似文献   

8.
采用微波溶剂热法成功制备直接Z型Zn_2SnO_(4-x)N_x/ZnO_(1-y)N_y核壳结构异质结光催化剂。2种物质不同的功函数改变了其表面电荷密度,并在界面处形成内建电场,导致其从传统的Ⅰ型镶嵌异质结转变为Ⅱ型异质结,再转变为Z型异质结构。N杂质原子替代O原子进入Zn_2SnO_4和ZnO的晶格,在两者的价带(VB)顶部形成双杂质能级。核壳结构的Z型异质结光催化剂对罗丹明B的降解速率为纯相Zn_2SnO_(4-x)N_x的1.40~1.43倍,同时具有良好的循环稳定性,且可以降解亚甲基蓝、甲基橙、水杨酸等污染物。Z型异质结的形成使其光生电子-空穴对具有较强的氧化还原能力,而双杂质能级的存在可以拓宽其光响应范围并提高载流子的分离效率。因此,Zn_2SnO_(4-x)N_x/ZnO_(1-y)N_y异质结光催化剂高的光催化活性归因于Z型异质结和双杂质能级的协同作用。  相似文献   

9.
作为生产尼龙6、尼龙66和聚酰胺树脂等各种聚合物的重要原材料,环己酮和环己醇(KA oil)每年在全球的消耗量大约在100万吨.KAoil主要采用苯酚加氢法和环己烷氧化法制备,其中苯酚加氢法可以在相对温和的反应条件下实现较高的选择性.目前, Pt基和Pd基非均相催化剂因具有良好的可重复使用性成为加氢反应的主流催化剂,但在实际应用中却面临着催化剂价格昂贵的问题.因此,减少贵金属的消耗量以降低KAoil的最终生产成本,开发探索出更高效的方法最大程度提升贵金属纳米催化剂的活性成为核心问题.目前,研究者致力于通过调控催化剂的金属粒径、合金结构和催化剂孔结构来提高金属纳米催化剂的苯酚加氢活性.近期研究发现,酸性氧化物载体可以用来提升负载金属中心的苯酚加氢活性,可以通过改变金属周围的微环境进一步提高金属活性.本文通过构建尺寸可调控的Pd纳米立方体/硫掺杂碳载体异质结结构,提出一种特殊的电子界面效应成功地提高了活性中心Pd纳米立方体的苯酚加氢活性.在金属/半导体载体异质结中,由金属和半导体之间所形成的肖特基势垒所驱动,电子在金属和半导体载体的界面处发生转移直至金属和半导体载体的费米能级达到平衡,最终...  相似文献   

10.
采用密度泛函理论(DFT)研究了氧吸附后Pt/Cu(001)表面合金的原子结构和表面性质.计算结果表明,在Pt/Cu(001)-p(2×2)-O表面最稳定结构中,衬底表面原子层不发生再构,氧原子吸附于4重对称的Pt原子谷位,每个氧原子吸附能约为2.303 eV.吸附结构的Cu-O和Pt-O键键长分别为0.202和0.298 nm,氧原子的吸附高度Zcu-O约为0.092 nm.吸附前后Pt/Cu(001)-1ML(monolayer)表面合金的表面功函数分别为4.678和5.355 ev.吸附表面氧原子和衬底的结合主要来自氧原子2p轨道和衬底金属原子d轨道的杂化作用,氧原子吸附形成的表面电子态主要位于费米能级以下约-2.7 eV处.  相似文献   

11.
Covalent organic frameworks (COFs), due to their low-density, high-porosity, and high-stability, have promising applications in gas storage. In this study we have explored the potential of COFs doped with Li and Ca metal atoms for storing hydrogen under ambient thermodynamic conditions. Using density functional theory we have performed detailed calculations of the sites Li and Ca atoms occupy in COF-10 and their interaction with hydrogen molecules. The binding energy of Li atom on COF-10 substrate is found to be about 1.0 eV and each Li atom can adsorb up to three H(2) molecules. However, at high concentration, Li atoms cluster and, consequently, their hydrogen storage capacity is reduced due to steric hindrance between H(2) molecules. On the other hand, due to charge transfer from Li to the substrate, O sites provide additional enhancement for hydrogen adsorption. With increasing concentration of doped metal atoms, the COF-10 substrate provides an additional platform for storing hydrogen. Similar conclusions are reached for Ca doped COF-10.  相似文献   

12.
Electrical properties of Schottky barrier diode fabricated using Aluminum for Schottky contact and indium tin oxide for ohmic contact and containing polypyrrole doped with dodecylbenzene sulfonic acid in the presence and in the absence of a plasticizing agent hydroquinone were studied. Various parameters, e.g. saturation current, ideality factor, built in voltage; carrier concentration and barrier height have been calculated and found to be affected by the presence of hydroquinone in the doped polymer. The electrical behavior of the systems was found to be in a good agreement with the thermionic emission model for the Schottky barrier devices. The interaction of the doped polypyrrole with hydroquinone was explained in terms of change in the barrier height and in the carrier concentration of the diodes.  相似文献   

13.
欧阳润海  李微雪 《催化学报》2013,34(10):1820-1825
采用密度泛函理论研究了CO气氛对FeO(111)/Ru(0001)负载Au原子吸附位、电荷及其稳定性的影响. 首先考察了FeO(111)单层薄膜在Ru(0001)表面上的界面结构. 研究发现,表面莫尔超晶胞内的HCP区域有最小的Fe-O层间距(rumpling),且Fe和O原子均与衬底Ru形成化学键. Au原子在FeO/Ru(0001)上最稳定的吸附在HCP区域的Fe-bridge位. 其中,Au原子诱导两个Fe原子从O原子层的下面翻转到其上面,形成两个Au-Fe键,且Au带负电. 当把体系暴露在CO气氛下后,CO能诱导Au原子从原来最稳定的Fe-bridge位转移到其邻近的O-top位,伴随着Au的电荷从负变到正,形成非常稳定的Au+-CO羰基物. 结果表明,反应气氛对负载金属催化剂的化学状态及其稳定性的影响很大; 同时也强调了反应条件下催化剂原位表征的重要性.  相似文献   

14.
采用密度泛函理论(DFT)中广义梯度近似(GGA)方法, 对Pt原子与γ-Al2O3(001)面的相互作用及迁移性能进行了研究. 分析了各种可能吸附位及吸附构型的松弛和变形现象, 吸附能和迁移能垒的计算结果表明: Pt团簇能够稳定吸附在该表面. Pt原子在表面O位的吸附能明显较高, 这主要是由Pt向基底O原子转移了电子所致. 电荷布居分析表明, Pt原子显电正性, Pt和Al原子之间存在排斥作用, 导致与Al原子产生较弱相互作用. 计算的平均吸附能大小依赖于Pt团簇的大小和形状, 总体趋势是随着Pt原子数增多, 吸附能降低. Pt原子在γ-Al2O3(001)表面迁移过程所需克服的迁移能垒最高值为0.51 eV. 随着吸附的Pt原子数增多,更倾向于形成Pt团簇. 因此, Pt原子在γ-Al2O3(001)表面的吸附演变不可能形成光滑、均匀平铺的吸附构型, 而在一定条件下容易出现团聚.  相似文献   

15.
Platinum is a commonly used cocatalyst for improved charge separation and surface reactions in photocatalytic water splitting. It is envisioned that its practical applications can be facilitated by further reducing the material cost and improving the efficacy of Pt cocatalysts. In this direction, the use of atomically controlled Pd@Pt quasi‐core–shell cocatalysts in combination with TiO2 as a model semiconductor is described. As demonstrated experimentally, the electron trapping necessary for charge separation is substantially promoted by combining a Schottky junction with interfacial charge polarization, enabled by the three‐atom‐thick Pt shell. Meanwhile, the increase in electron density and lattice strain would significantly enhance the adsorption of H2O onto Pt surface. Taken together, the improved charge separation and molecular activation dramatically boost the overall efficiency of photocatalytic water splitting.  相似文献   

16.
The O2 adsorption and dissociation on M‐doped (M = Cu, Ag, W) Al(111) surface were studied by density functional theory. The adsorption energy of adsorbate, the average binding energy and surface energy of Al surface, and the doping energy of doping atom were calculated. All the doped atoms can be stably combined with Al atoms, while being slightly embedded in the surface to a certain depth. The TOP‐type surfaces are the most stable doped surfaces for O2 adsorption, which is related to the orbital hybridization between the adsorbate and the surface atoms, the electronegativity, and the orbital energy level of the doping atoms. Moreover, the O atoms and doping atoms contribute significantly to the density of states (DOS), especially the O‐p orbital electrons and the d orbital electrons of doping atoms. The degree of O2 dissociation is related to the doping atoms on Al surfaces, and the doping atoms actually resist the dissociation of O2. W atoms have the best resistance effect on the O2 dissociation as compared with Cu and Ag atoms, especially W‐1NN surface, which has both large barrier energy and reaction energy.  相似文献   

17.
The O‐terminated ZnO(000‐1) surface and Mn/ZnO(000‐1) interface have been investigated by synchrotron radiation photoemission spectroscopy (SRPES), low energy electron diffraction (LEED) and X‐ray photoelectron spectroscopy (XPS) systematically. Our results show that ordered O‐polar ZnO(000‐1) surface can be prepared by annealing in an oxygen ambience and this polar surface expresses good chemical stability. At room temperature, metallic Mn film is deposited onto the cleaned ZnO(000‐1)surface and grows in a layer‐by‐layer mode. During the process of Mn film deposition a downward Fermi level movement is observed, and the final resultant Schottky barrier height is 1.07 ± 0.05 eV. High temperature annealing is performed and the interfacial reaction happens evidently. The interfacial chemical reaction and the effect of interfacial dipole layer have been briefly discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
We used X-ray photoemission spectroscopy (XPS) to investigate the surface species of poly(p-phenylene vinylene) (PPV) and its interface formation with Ca and Al. PPV surfaces compositions varied with sample preparation. For relatively "clean'' surfaces with 4–5% O, analysis of the O 1s peak revealed four types of oxygen species, namely carbonyl (C=O), hydroxyl (C–OH), ether (C–O–C) and the carboxylic groups (HO–C=O). The oxygen groups, excluding ether, reacted with Al or Ca to form the corresponding metal oxides. Chemical interactions between the metals and the phenylene and vinylene units to yield new species were not detected. For sulfur-free surfaces, a C 1s peak shift of +0.5 eV followed the deposition of 15–30 Å of Ca on PPV. For sulfur-containing surfaces, the C 1s peak shift was −0.5 eV. We attribute this difference to the interaction of metal atoms with the sulfur impurities. For Al/PPV, a C 1s peak shift occurred at <2 Å of Al deposition and reached a constant value of about +0.4 eV after ⪅8 Å of Al. Again, the direction of the peak shift depended on the presence of sulfur impurities. We attribute the C 1s peak shifts to surface band bending and to Schottky barrier formation. Since surface oxidation of PPV can inhibit band-bending, our overall results suggest that the barrier height at the metal/PPV interface is highly sensitive to the surface preparation and relatively insensitive to the work function of the metals. The shift seen by XPS in the C 1s core level spectra of PPV points clearly to charge transfer and Schottky barrier formation at the interface as a result of metal deposition. These results imply that the metal/polymer interface is not rigid and that triangular barrier tunneling fails to take into account the effect of barrier formation. We propose a band-bending modified tunneling (BBMT) model to explain charge transfer at the Ca/polymer interface. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
This paper reveals the fact that the O adatoms (O(ad)) adsorbed on the 5-fold Ti rows of rutile TiO(2)(110) react with CO to form CO(2) at room temperature and the oxidation reaction is pronouncedly enhanced by Au nano-clusters deposited on the above O-rich TiO(2)(110) surfaces. The optimum activity is obtained for 2D clusters with a lateral size of ~1.5 nm and two-atomic layer height corresponding to ~50 Au atoms∕cluster. This strong activity emerging is attributed to an electronic charge transfer from Au clusters to O-rich TiO(2)(110) supports observed clearly by work function measurement, which results in an interface dipole. The interface dipoles lower the potential barrier for dissociative O(2) adsorption on the surface and also enhance the reaction of CO with the O(ad) atoms to form CO(2) owing to the electric field of the interface dipoles, which generate an attractive force upon polar CO molecules and thus prolong the duration time on the Au nano-clusters. This electric field is screened by the valence electrons of Au clusters except near the perimeter interfaces, thereby the activity is diminished for three-dimensional clusters with a larger size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号