首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cd0.9−xZn0.1CuxS (0≤x≤0.06) nanoparticles were successfully synthesized by a conventional chemical co-precipitation method at room temperature. Crystalline phases and optical absorption of the nanoparticles have been studied by X-ray diffraction (XRD) and UV–visible spectrophotometer. XRD confirms the phase singularity of the synthesized material, which also confirmed the formation of Cd–Zn–Cu–S alloy nanocrystals rather than separate nucleation or phase formation. Elemental composition was examined by the energy dispersive X-ray analysis and the microstructure was examined by scanning electron microscope. The blue shift of absorption edge below Cu=2% is responsible for dominance of Cu+ while at higher Cu concentration dominated Cu2+, d–d transition may exist. It is suggested that the addition of third metal ion (Cu2+/Cu+) is an effective way to improve the optical property and stability of the Cd0.9Zn0.1S solid solutions. When Cu is introduced, stretching of Cd–Zn–Cu–S bond is shifted lower wave number side from 678 cm−1 (Cu=0%) to 671 cm−1 (Cu=6%) due to the presence of Cu in Cd–Zn–S lattice and also the size effect. The variation in blue band emission peak from 456 nm (∼2.72 eV) to 482 nm (∼2.58 eV) by Cu-doping is corresponding to the inter-band radiation combination of photo-generated electrons and holes. Intensity of red band emission centered at 656 nm significantly increased up to Cu=4%; beyond 4% it is decreased due to the quenching of Cu concentration.  相似文献   

2.
Ce, Cu co-doped ZnO (Zn1−2xCexCuxO: x=0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) nanocrystals were synthesized by a microwave combustion method. These nanocrystals were investigated by using X-ray diffraction (XRD), UV–visible diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The stability and magnetic properties of Ce and Cu co-doped ZnO were probed by first principle calculations. XRD results revealed that all the compositions are single crystalline. hexagonal wurtzite structure. The optical band gap of pure ZnO was found to be 3.22 eV, and it decreased from 3.15 to 3.10 eV with an increase in the concentration of Cu and Ce content. The morphologies of Ce and Cu co-doped ZnO samples confirmed the formation of nanocrystals with an average grain size ranging from 70 to 150 nm. The magnetization measurement results affirmed the antiferro and ferromagnetic state for Ce and Cu co-doped ZnO samples and this is in agreement with the first principles theoretical calculations.  相似文献   

3.
Un-hydrogenated and hydrogenated Cu, Co co-doped ZnO (Zn0.96−xCo0.04CuxO, x=0.03, 0.04 and 0.05) nanopowders have been synthesized by co-precipitation method. The synthesized samples have been characterized by powder X-ray diffraction, energy dispersive X-ray spectra, UV–Visible spectrophotometer and Fourier transform infrared spectroscopy. The calculated average crystalline size increases from 37.3 to 50.6 nm for un-hydrogenated samples from x=0.03 to 0.05 and it changes from 29.4 to 34.9 nm for hydrogenated samples. The change in lattice parameters, micro-strain, a small shift of X-ray diffraction peaks towards lower angles and reduction in energy gap reveal the substitution of Cu2+ ions into Zn–Co–O lattice. The hydrogenation effect reduces the particle size and induces the more uniform distribution of particles than the un-hydrogenated samples which is confirmed by SEM micrographs. Photoluminescence spectra of Zn0.96−xCo0.04CuxO system shows that red shift in near band edge ultraviolet emission from 393 to 403 nm with suppressing intensity and a blue shift in green band emission from 537 to 529 nm with enhancing intensity confirms the substitution of Cu into the Zn–Co–O lattice.  相似文献   

4.
The lattice dynamics of CdxHg1-x-y ZnyTe solid solutions is studied theoretically and experimentally. The frequencies of the basic optical phonons of CdxHg1-x-y ZnyTe are calculated in terms of a modified random-element isodisplacement model. As a result, all basic vibrations of the crystal lattice that substantially affect the optical properties of this material in the spectral region corresponding to one-phonon resonance are identified. The optical properties of epitaxial CdxHg1-x-y ZnyTe layers grown by liquid-phase epitaxy on Cd1-x ZnxTe substrates are studied. The calculated and experimental spectral dependences of the dielectric function of CdxHg1-x-y ZnyTe solid solutions of various compositions are compared at 295 and 78 K, and good agreement between them is reached. The additional lattice vibrations whose frequencies in the phonon density of states are lower than that of the HgTe mode are shown to be caused by the lattice defects of the CdxHg1-x-y ZnyTe solid solutions.  相似文献   

5.
Zn0.98−xCuxV0.02O (x=0, 0.01, 0.02 and 0.03) samples were synthesized by the sol–gel technology to dope up to 3% Cu in ZnO. Investigations of structural, optical and magnetic properties of the samples have been done. The results of X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) indicated that the V and Cu ions were incorporated into the crystal lattices of ZnO. With Cu doping concentration increasing up to 2 at%, the XRD results showed that all diffraction peaks corresponded to the wurtzite structure of ZnO. Photoluminescence (PL) measurements showed that Zn0.98−xCuxV0.02O powders exhibited that the position of the ultraviolet (UV) emission peak of the samples showed an obvious red-shift and the green emission peak enhanced significantly with Cu doping in ZnVO nanoparticle. Magnetic measurements indicated that room temperature ferromagnetism (RTFM) of Zn0.98−xCuxV0.02O was an intrinsic property when Cu concentration was less than 3 at%. The saturation magnetization (Ms) of Zn0.98−xCuxV0.02O (x=0, 0.01 and 0.02) increased with the increase of the Cu concentration.  相似文献   

6.
Modifications in the structural and optical properties of 100 MeV Ni7+ ions irradiated cobalt doped ZnO thin films (Zn1−xCoxO, x = 0.05) prepared by sol-gel route were studied. The films irradiated with a fluence of 1 × 1013 ions/cm2 were single phase and show improved crystalline structure with preferred C-axis orientation as revealed from XRD analysis. Effects of irradiation on bond structure of thin films were studied by FTIR spectroscopy. The spectrum shows no change in bonding structure of Zn-O after irradiation. Improved quality of films is further supported by FTIR studies. Optical properties of the pristine and irradiated samples have been determined by using UV-vis spectroscopic technique. Optical absorption spectra show an appreciable red shift in the band gap of irradiated Zn1−xCoxO thin film due to sp-d interaction between Co2+ ions and ZnO band electrons. Transmission spectra show absorption band edges at 1.8 eV, 2.05 eV and 2.18 eV corresponding to d-d transition of Co2+ ions in tetrahedral field of ZnO. The AFM study shows a slight increase in grain size and surface roughness of the thin films after irradiation.  相似文献   

7.
The ternary Zn1?x Cd x O (x = 0, 0.2) thin films with wurtzite structure and highly (002)-preferred orientations were deposited on glass substrates by the direct current (dc) reactive magnetron sputtering method. The X-ray diffraction, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), optical absorption spectra and photoluminescence (PL) were employed to investigate the structural and the optical properties in detail. The results indicated that as x varied from x = 0–0.2, the diffraction angle of the (002) peaks decreased from ~34.36° to ~33.38° and the lattice spacing increased from 0.260 to 0.268 nm. Moreover, the optical band-gap of the Zn1?x Cd x O thin films with the wurtzite structure decreased from 3.20 eV at x = 0–2.70 eV at x = 0.2. Correspondingly, the near-band-edge PL was tuned in a wide visible region from ~393 to 467 nm. The chemical bonding states of Cd in Zn1?x Cd x O alloy thin films were examined by XPS analysis.  相似文献   

8.
V MATHIVANAN  M HARIS 《Pramana》2013,81(1):177-187
Single crystal growth of pure and copper-doped iron tartrate crystals bearing composition Cu x Fe(1???x)C4H4O6·nH2O, where x = 0, 0.07, 0.06, 0.05, 0.04, 0.03, is achieved using gel technique. The elemental analysis has been done using energy-dispersive X-ray analysis (EDAX) spectrum. The characterization studies such as Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), magnetic analysis and thermal analysis have been done for crystals with x = 0 for pure iron tartrate and with x = 0.05 for copper-mixed iron tartrate crystals. A detailed comparison has been made between pure and doped crystals.  相似文献   

9.
Present study reports the detailed structural and magnetic, as well as chemical analysis of polycrystalline Zn1−xMnxO (where x=0, 0.005, 0.01, 0.03, 0.05 and 0.1) samples synthesized by the high-temperature solid state reaction route. X-ray diffraction studies reveal the presence of secondary phase for higher Mn-doping concentrations (x≥0.03). Secondary phase formation having spinel structure is confirmed and reported as an evidence for the first time using transmission electron microscopy study. Chemical investigations using X-ray photoelectron spectroscopy showed the presence of Mn in two valence states. From the observed results we are of the opinion that Zn2+ ions, mainly present at or near grain boundaries, diffuse into manganese oxide to form a stable spinel phase ZnxMn3−xO4 at or near the grain boundaries of ZnO/Zn1−xMnxO. Magnetization measurements did not show any magnetic transition down to 5 K.  相似文献   

10.
Zn0.95−xCo0.05CuxO (ZCCO, where x = 0, 0.005, 0.01 and 0.015) thin films were deposited on Si (1 0 0) substrates by pulsed laser deposition technique. Crystal structures, surface morphologies, chemical compositions, bonding states and chemical valences of the corresponding elements for ZCCO films were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and X-ray photoelectron spectroscopy (XPS). XRD and FESEM results indicate that crystallite sizes of the highly (0 0 2)-oriented ZCCO films slightly decrease with increasing Cu content. When the Cu content increases from 0 to 0.015, Zn 2p3/2, Co 2p, Cu 2p3/2 and O 1s peaks of the ZCCO film shift towards higher or lower binding energy regions, and the reasons for these chemical shifts are investigated by fitting the corresponding XPS narrow-scan spectra. Both in-plane and out-of-plane magnetization-magnetic field hysteresis loops of the ZCCO films reveal that all the films have room temperature ferromagnetisms (RTFMs). The conceivable origin of the RTFM is ascribed to the combined effects of the local structural disorder resulted from (Co2+, Cu2+, Cu1+)-cations which substitute Zn2+ ions in the ZnO matrices, ferromagnetic coupling between coupled dopant atoms caused by Co2+ (3d74s0) and Cu2+ (3d94s0) spin states, and exchange interactions between the unpaired electron spins originating from lattice defects induced by Cu doping in the Zn0.95Co0.05O matrices.  相似文献   

11.
Ternary polycrystalline Zn1−xCdxO semiconductor films with cadmium content x ranging from 0 to 0.23 were obtained on quartz substrate by pulse laser deposited (PLD) technique. X-ray diffraction measurement revealed that all the films were single phase of wurtzite structure grown on c-axis orientation with its c-axis lattice constant increasing as the Cd content x increasing. Atomic force microscopy observation revealed that the grain size of Zn1−xCdxO films decreases continuously as the Cd content x increases. Both photoluminescence and optical measurements showed that the band gap decreases from 3.27 to 2.78 eV with increasing the Cd content x. The increase in Cd content x also leads to the broadening of the emission peak. The resistivity of Zn1−xCdxO films decreases evidently for higher values of Cd content x. The shift of PL emission to visible light as well as the decrease of resistivity makes the Zn1−xCdxO films potential candidate for optoelectronic device.  相似文献   

12.
Fe-doped CdS (Cd0.98Fe0.02S) and Fe, Zn co-doped CdS (Cd0.98−xZnxFe0.02S (x=0.02, 0.04, and 0.06)) thin films have been successfully deposited on glass substrate by chemical bath deposition technique using aqueous ammonia solution at pH = 9.5. Phase purity of the samples having cubic structure with (111) as the preferential orientation was confirmed by X-ray diffraction technique. Shift of X-ray diffraction peak position towards higher angle side and decrease of lattice parameters, volume and crystallite size confirmed the proper incorporation of Zn into Cd–Fe–S except Zn=6%. The compositional analysis (EDX) showed that Cd, Fe, Zn and S are present in the films. The enhanced band gap and higher transmittance observed in Cd0.94Zn0.04Fe0.02S films are the effective way to use solar energy and enhance its photocatalytic activity under visible light. The enhanced green band emission than blue band by Zn-doping evidenced the existence of higher defect states.  相似文献   

13.
Valence band electron states of Cd1-xMnxTe mixed crystals were determined over the composition range 0?x?0.7 by ultra-violet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). A peak at 3.5 eV binding energy (BE) whose magnitude increases with the manganese mole fraction x was identified as originating from the Mn 3d5 level. A previously reported structure at 6.5 eV BE was also observed for x>0.4; it is, however, believed to be a satellite of the 3.5 eV peak originating from a shake-up process.  相似文献   

14.
In this work, Ni-doped ZnO (Zn1−xNixO, x=0, 0.03, 0.06, 0.11) films were prepared using magnetron sputtering. X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), temperature dependence electrical resistance, Hall and magnetic measurements were utilized in order to study the properties of the Ni-doped ZnO films. XRD and XAS results indicate that all the samples have a ZnO wurtzite structure and Ni atoms incorporated into ZnO host matrix without forming any secondary phase. The Hall and electrical resistance measurements revealed that the resistivity increased by Ni doping, and all the Ni-doped ZnO films exhibited n-type semiconducting behavior. The magnetic measurements showed that for the samples with x=0.06 and 0.11 are room-temperature ferromagnetic having a saturation magnetization of 0.33 and 0.39 μB/Ni, respectively. The bound-magnetic-polaron mediated exchange is proposed to be the possible mechanism for the room-temperature ferromagnetism in this work.  相似文献   

15.
This work investigates the effect of NaF on optical and structural properties of nano crystalline CdxZn1?xS films. The CdxZn1?xS films are prepared through chemical bath deposition (CBD) technique in aqueous alkaline bath and their subsequent condensation on substrates. The as-obtained samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–VIS absorption spectroscopy. Micro structural features, obtained from XRD analysis confirm the formation of cubic phase of undoped as well as NaF doped CdxZn1?xS nano particles while SEM observations depict non-uniform distribution of grains. These results show the average grain size of pure as well as NaF doped samples to range from 50 to 90 nm. Tauc's plots, extracted from absorption spectra exhibit absorption to be dominating mainly in blue-green region of visible spectrum. The room-temperature photoluminescence (PL) spectra of CdxZn1?xS samples show a peak around 425 nm, which gets blue shifted for doped sample indicating improvement in PL properties on its addition.  相似文献   

16.
Zn1−xCdxO nanocrystalline powder with different Cd contents (0≤x≤1) has been prepared by new facile sol–gel route. The crystal structure and optical properties were investigated by X-ray diffraction patterns, Transmission electron microscope, X-ray photoelectron spectroscopy, Photoluminescence. As x varied from x=0 to 0.25, the Zn1−xCdxO nanopowder exhibits a hexagonal wurtzite structure of pure ZnO without any significant formation of a separated CdO phase. For the samples with 0.5≤x≤0.85, the Zn1−xCdxO nanopowder exhibits the coexistence of hexagonal ZnO and cubic CdO phase, meanwhile, the content of ZnO phase decreases while that of CdO increases with increasing the Cd content x. The ultra-violet near-band-edge emission of the Zn1−xCdxO nanopowder was monotonously red-shifted from 389 nm (x=0) to 406 nm (x=0.25) due to the direct modulation of band gap caused by Cd substitution.  相似文献   

17.
Nanocrystalline Zn1−xMnxO(x=0−0.1) powders are prepared by polymeric precursor method and their structural and magnetic properties carefully studied. X-ray diffraction studies and Raman spectroscopy reveal that Mn2+ ions have substituted the Zn2+ ion without changing the würtzite structure of pristine ZnO up to Mn concentrations x≤0.05. The presence of a secondary phase, related to the solubility of Mn in ZnO is evident for higher Mn-doping concentrations. The negative value obtained for the Curie–Weiss temperature indicates that the interactions between the Mn ions are predominantly antiferromagnetic. Thus, no bulk ferromagnetism is evident in any of the studied samples.  相似文献   

18.
Nanoparticles of Co and Ni codoped zinc oxide, Zn0.9Co0.1−xNixO (x=0.0, 0.03, 0.06 and 0.09), diluted magnetic semiconductors (DMSs) are synthesized by the sol-gel method at annealing temperature of 500 °C. X-ray diffraction (XRD) patterns confirm the single phase character of the samples with x=0.0 and 0.03. However, minor NiO secondary phase is detected in the samples with x=0.06 and 0.09. All of them possess the hexagonal wurtzite structure. There is no significant change in the lattice parameters due to variation of doping concentration. The average particle size is found to be 19.31-25.71 nm. FTIR and UV-vis spectroscopic results confirm the incorporation of the dopants into the ZnO lattice structure. Magnetization data reveal the presence of room temperature ferromagnetism (RTFM). The XRD patterns rule out the formation of secondary phase of either metallic Co cluster or CoO in the samples. Nevertheless, the secondary phases are a concern in any DMS system as a source of spurious magnetic signals. Therefore, we carried out the XPS studies from which the oxidation states of Co and Ni are found to be Co2+ and Ni2+, respectively. Moreover, XPS O 1s spectra show evidence of the presence of the oxygen vacancy in the ZnO matrix.  相似文献   

19.
Selected area electron diffraction pattern (SADP) and transmission electron microscopy (TEM) measurements were carried out to investigate the spontaneously ordered structure in CdxZn1−xTe epilayers grown on GaAs (100) substrates. The SADP showed superstructure reflections with symmetrical intensity, and the high-resolution TEM (HRTEM) micrographs showed doublet periodicity in the contrast of the {100} lattice planes. The results of the SADP and the HRTEM measurements showed a Cu3Au-type ordered structure was formed in the CdxZn1−xTe epilayer. The present results can help improve understanding of the Cu3Au-type ordered structures in CdxZn1−xTe epilayers grown on GaAs substrates.  相似文献   

20.
Zn1−xCoxO (0 ≤ x ≤ 0.15) thin films grown on Si (1 0 0) substrates were prepared by a sol-gel technique. The effects of Co doped on the structural, optical properties and surface chemical valence states of the Zn1−xCoxO (0 ≤ x ≤ 0.15) films were investigated by X-ray diffraction (XRD), ultraviolet-visible spectrometer and X-ray photoelectron spectroscopy (XPS). XRD results show that the Zn1−xCoxO films retained a hexagonal crystal structure of ZnO with better c-axis preferred orientation compared to the undoped ZnO films. The optical absorption spectra suggest that the optical band-gap of the Zn1−xCoxO thin films varied from 3.26 to 2.79 eV with increasing Co content from x = 0 to x = 0.15. XPS studies show the possible oxidation states of Co in Zn1−xCoxO (0 ≤ x ≤ 0.05), Zn0.90Co0.10O and Zn0.85Co0.15O are CoO, Co3O4 and Co2O3, with an increase of Co content, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号