首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the first general synthesis of boron‐substituted monobenzofused 1,4‐azaborines using ring‐closing metathesis of an enamine‐containing diene as a key synthetic strategy. As part of our investigations, we discovered that the B‐C3 moiety in a 1,4‐azaborine can serve uniquely as a η2‐L‐type ligand. This functionality is exemplified by two κ2N‐η2‐BC Pt complexes of a boron‐pyridyl‐substituted monobenzofused‐1,4‐azaborine. Single‐crystal X‐ray diffraction analysis of the Pt complexes shows a strong structural contribution from the iminium resonance form of the monobenzofused‐1,4‐azaborine ligand. We also demonstrate that a palladium(0) complex supported by a 1,4‐azaborine‐based phosphine ligand can catalyze hydroboration of 1‐buten‐3‐yne with unique selectivity. In view of the importance of arene–metal π‐interactions in catalytic applications, this work should open new opportunities for ligand design involving the 1,4‐azaborine motif as an arene substitute.  相似文献   

2.
The first trans‐selective cyanoboration reaction of an alkyne, specifically a 1,3‐enyne, is described. The reported palladium‐catalyzed cyanoboration of 1,3‐enynes is site‐, regio‐, and diastereoselective, and is uniquely enabled by the 1,4‐azaborine‐based Senphos ligand structure. Tetra‐substituted alkenyl nitriles are obtained providing useful boron‐dienenitrile building blocks that can be further functionalized. The utility of our method has been demonstrated with the synthesis of Satigrel, an anti‐platelet aggregating agent.  相似文献   

3.
Reactions of pyrazole based ligand and halide bridged arene d6 metal precursors resulted a series of mono and di‐substituted pyrazole based half sandwich d6 metal complexes. In general, they are formulated as [(arene)MLCl2] [M = Ru, arene = benzene ( 1 ), p‐cymene ( 2 ), arene = Cp*, M = Rh ( 3 ) and Ir ( 4 )] and [(arene)ML2Cl] [M = Ru, arene = benzene ( 5 ), p‐cymene ( 6 ), arene = Cp*, M = Rh ( 7 ) and Ir ( 8 )]. All these complexes were characterized by various spectroscopic techniques (IR, 1H NMR, ESI‐MS, and UV/Vis). The molecular structures were confirmed by single‐crystal X‐ray diffraction technique. Spectroscopic studies revealed that complexation i.e., mono‐ and di‐substitution occurred by the ratio‐based reaction between pyrazole ligand and metal precursor through the neutral nitrogen rather than protic nitrogen. In these complexes deprotonation of the protic nitrogen does not occur unlike the other complexes containing pyrazole derivatives, in which the pyrazole ligand is anionic.  相似文献   

4.
5.
The platinum(II) mixed ligand complexes [PtCl(L1‐6)(dmso)] with six differently substituted thiourea derivatives HL, R2NC(S)NHC(O)R′ (R = Et, R′ = p‐O2N‐Ph: HL1; R = Ph, R′ = p‐O2N‐Ph: HL2; R = R′ = Ph: HL3; R = Et, R′ = o‐Cl‐Ph: HL4; R2N = EtOC(O)N(CH2CH2)2N, R′ = Ph: HL5) and Et2NC(S)N=CNH‐1‐Naph (HL6), as well as the bis(benzoylthioureato‐κO, κS)‐platinum(II) complexes [Pt(L1, 2)2] have been synthesized and characterized by elemental analysis, IR, FAB(+)‐MS, 1H‐NMR, 13C‐NMR, as well as X‐ray structure analysis ([PtCl(L1)(dmso)] and [PtCl(L3, 4)(dmso)]) and ESCA ([PtCl(L1, 2)(dmso)] and [Pt(L1, 2)2]). The mixed ligand complexes [PtCl(L)(dmso)] have a nearly square‐planar coordination at the platinum atoms. After deprotonation, the thiourea derivatives coordinate bidentately via O and S, DMSO bonds monodentately to the PtII atom via S atom in a cis arrangement with respect to the thiocarbonyl sulphur atom. The Pt—S‐bonds to the DMSO are significant shorter than those to the thiocarbonyl‐S atom. In comparison with the unsubstituted case, electron withdrawing substituents at the phenyl group of the benzoyl moiety of the thioureate (p‐NO2, o‐Cl) cause a significant elongation of the Pt—S(dmso)‐bond trans arranged to the benzoyl‐O—Pt‐bond. The ESCA data confirm the found coordination and bonding conditions. The Pt 4f7/2 electron binding energies of the complexes [PtCl(L1, 2)(dmso)] are higher than those of the bis(benzoylthioureato)‐complexes [Pt(L1, 2)2]. This may indicate a withdrawal of electron density from platinum(II) caused by the DMSO ligands.  相似文献   

6.
A series of dinuclear cycloplatinated(II) complexes with general closed formula of [Pt2Me2(C^N)2(μ‐P^P)] (C^N = 2‐vinylpyridine (Vpy), 2,2′‐bipyridine N‐oxide (O‐bpy), 2‐(2,4‐difluorophenyl)pyridine (dfppy); P^P = 1,1‐bis(diphenylphosphino)methane (dppm), N,N‐bis(diphenylphosphino)amine (dppa)) are reported. The complexes were characterized by means of NMR spectroscopy. Due to the presence of dppm and dppa with short backbones as bridging ligands, two platinum centres are located in front of each other in these complexes so a Pt…Pt interaction is established. Because of this Pt…Pt interaction, the complexes have bright orange colour under ambient light and are able to strongly emit red light under UV light exposure. These strong red emissions originate from a 3MMLCT (metal–metal‐to‐ligand charge transfer) electronic transition. In most of these complexes, the emissions have unstructured bell‐shaped bands, confirming the presence of large amount of 3MMLCT character in the emissive state. Only the complexes bearing dfppy and dppa ligands reveal dual luminescence: a high‐energy structured emission originating from 3ILCT/3MLCT (intra‐ligand charge transfer/metal‐to‐ligand charge transfer) and an unstructured low‐energy band associated with 3MMLCT. In order to describe the nature of the electronic transitions, density functional theory calculations were performed for all the complexes.  相似文献   

7.
Novel macrocyclic monooxa-diselkylene-1,ω-dioxy substituted calix[4]arene derivatives 1a-5a were synthesized by the reaction of calix[4]arene dibromides 1-5 with the disodium salt of bis(2-selenylethyl)ether in the yields between 28% and 64%. Their structures were characterized by proton and carbon NMR spectra. X-Ray structure analysis of la further confirmed the cone conformation of compounds 1a-5a. An interesting host-guest complex of la with dichloromethane via CH/π and C1/π interactions was elucidated. Extraction experiments showed that these novel monooxa-diselkylene-1,ω-dioxy substituted calix[4]arene derivatives 1a-5a had strong extraction ability towards mercury ion. The interaction of Hg^2+with the calix ligand has also been investigated by 1^H NMR titration.  相似文献   

8.
The reaction of (1R,2R)‐(–)‐1,2‐diaminocyclohexane ( 1 ) [DACH] with the aldehyde (1R)‐(–)‐myrtenal ( 2 ) in MeOH afforded the bidentate diimine ligand, (1R,2R)‐(–)‐N1,N2‐bis{(1R)‐(–)myrtenylidene}‐1,2‐diaminocyclohexane ( 3 ) in a high yield. Reduction of 3 using LiAlH4 led to the formation of the desired ligand ( 4 ) (1R,2R)‐(–)‐N1,N2‐bis{(1R)‐(–)myrtenyl}‐1,2‐diaminocyclohexane. Treatment of compound 4 with K2PtCl4 or K2PdCl4 yielded the corresponding platinum(II) and palladium(II) complexes, Pt‐5 and Pd‐6 , respectively. The reaction of compound 3 with K2PtCl4 gave the diimine complex Pt‐7 . The cytotoxic activity of the complexes Pt‐5 , Pd‐6 and Pt‐7 was tested and compared to the approved drugs, cisplatin ( Cis ‐Pt ) and oxaliplatin ( Ox‐Pt ). The complexes ( Pt‐5 , Pd‐6 and Pt‐7 ) inhibit L1210 cell line proliferation with an IC50 of 0.6, 4.2, and 0.7 μL, respectively as evidenced by measuring thymidine incorporation.  相似文献   

9.
Substitution reactions of three dinuclear Pt(II) complexes connected by a pyridine‐bridging ligand of variable length, namely [ cis‐{PtOH2(NH3)2}2–μ–L]4+, where L = 4,4′‐bis(pyridine)sulfide ( Pt1 ), 4,4′‐bis(pyridine)disulfide ( Pt2 ), and 1,2‐bis(4‐pyridyl)ethane ( Pt3 ) with S‐donor nucleophiles (thiourea, 1,3‐dimethyl‐2‐thiourea, and 1,1,3,3‐tetramethyl‐2‐thiourea) and anionic nucleophiles (SCN?, I?, and Br?) were investigated. The substitutions were followed under pseudofirst‐order conditions as a function of the nucleophile concentration and temperature, using stopped‐flow and UV–visible spectrophotometric methods. The observed pKa values were, respectively, Pt1 (pKa1: 4.86; pKa2: 5.53), Pt2 (pKa1: 5.19; pKa2: 6.42), and Pt3 (pKa1: 5.04; pKa2: 5.45). The second‐order rate constants for the lability of aqua ligands in the first step decreased in the order Pt2 > Pt3 > Pt1 , whereas for the second step it is Pt1 > Pt2 > Pt3 . The obtained results indicate that introduction of a spacer atom(s) on the structure of the bridging ligand influences the substitution reactivity as well as acidity of the investigated dinuclear Pt(II) complexes. Also nonplanarity of the bridging ligand of Pt1 complex significantly slows down the rate of substitution due to steric hindrance, whereas release of the strain enhances the dissociation of the bridging ligand. The release of the bridging ligand in the second step was confirmed by the 1H NMR of Pt1‐Cl with thiourea in DMF‐d7. The temperature dependence of the second–order rate constants and the negative values of entropies of activation (ΔS#) support an associative mode of the substitution mechanism.  相似文献   

10.
The reaction behaviour of 1, 3, 5‐triaza‐2σ3λ3‐phosphorin‐4, 6‐dionyloxy‐substituted calix[4]arenes towards mono‐ and binuclear rhodium and platinum complexes was investigated. Special attention was directed to structure and dynamic behaviour of the products in solution and in the solid state. Depending on the molar ratio of the reactands, the reaction of the tetrakis(triazaphosphorindionyloxy)‐substituted calix[4]arene ( 4 ) and its tert‐butyl‐derivative ( 1 ) with [(cod)RhCl]2 yielded the mono‐ and disubstituted binuclear rhodium complexes 2 , 3 , and 5 . In all cases, a C2‐symmetrical structure was proved in solution, apparently caused by a fast intramolecular exchange process between cone conformation and 1, 3‐alternating conformation. The X‐ray crystal structure determination of 5 confirmed [(calixarene)RhCl]2‐coordination through two opposite phosphorus atoms with a P ⃜P separation of 345 pm. The complex displays crystallographic inversion symmetry, and the Rh2Cl2 core is thus exactly planar. Reaction of 1 and of the bis(triazaphosphorindionyloxy)‐bis(methoxy)‐substituted tert‐butyl‐calix‐[4]arene ( 7 ) with (cod)Rh(acac) in equimolar ratio and subsequent reaction with HBF4 led to the expected cationic monorhodium complexes 5 and 8 , involving 1, 3‐alternating P‐Rh‐P‐coordination. The cone conformation in solution was proved by NMR spectroscopy and characteristic values of the 1J(PRh) coupling constants in the 31P‐NMR‐spectra. Reaction of equimolar amounts of 4 with (cod)Rh(acac) or (nbd)Rh(acac) led, by substitution of the labile coordinated acetylacetonato and after addition of HBF4, to the corresponding mononuclear cationic complexes 9 and 10 . Only two of the four phosphorus atoms in 9 and 10 are coordinated to the central metal atom. Displacement of either cycloocta‐1, 5‐diene or norbornadiene was not observed. For both compounds, the cone conformation was proved by NMR spectroscopy. Reaction of 4 with (cod)PtCl2 led to the PtCl2‐complex ( 11 ). As for all compounds mentioned above, only two phosphorus atoms of the ligand coordinate to platinum, while two phosphorus atoms remain uncoordinated (proved by δ31P and characteristic values of 1J(PPt)). NMR‐spectroscopic evidence was found for the existence of the cone conformation in the cis‐configuration of 11 .  相似文献   

11.
The d6 metal complexes of thiourea derivatives were synthesized to investigate its cytotoxicity. Treatment of various N‐phenyl‐N´ pyridyl/pyrimidyl thiourea ligands with half‐sandwich d6 metal precursors yielded a series of cationic complexes. Reactions of ligand (L1‐L3) with [(p‐cymene)RuCl2]2 and [Cp*MCl2]2 (M = Rh/Ir) led to the formation of a series of cationic complexes bearing general formula [(arene)M(L1)к2(N,S)Cl]+, [(arene)M(L2)к2(N,S)Cl]+ and [(arene)M(L3)к2(N,S)Cl]+ [arene = p‐cymene, M = Ru ( 1 , 4 , 7 ); Cp*, M = Rh ( 2 , 5 , 8 ); Cp*, Ir ( 3 , 6 , 9 )]. These compounds were isolated as their chloride salts. X‐ray crystallographic studies of the complexes revealed the coordination of the ligands to the metal in a bidentate chelating N,S‐ manner. Further the cytotoxicity studies of the thiourea derivatives and its complexes evaluated against HCT‐116 (human colorectal cancer), MIA‐PaCa‐2 (human pancreatic cancer) and ARPE‐19 (non‐cancer retinal epithelium) cancer cell lines showed that the thiourea ligands displayed no activity. Upon complexation however, the metal compounds possesses cytotoxicity and whilst potency is less than cisplatin, several complexes exhibited greater selectivity for HCT‐116 or MIA‐PaCa‐2 cells compared to ARPE‐19 cells than cisplatin in vitro. Rhodium complexes of thiourea derivatives were found to be more potent as compared to ruthenium and iridium complexes.  相似文献   

12.
The BN analogue of ortho‐benzyne, 1,2‐azaborine, is shown to bind carbon monoxide and a xenon atom under matrix isolation conditions, demonstrating its strongly Lewis acidic superelectrophilic nature. The Lewis acid–base complexes involving CO and Xe can be cleaved photochemically and reformed by mildly annealing the matrices. The interaction energy of 1,2‐azaborine with Xe is 3 kcal mol?1 according to quantum chemical computations, and is similar to that of the superelectrophilic carbene difluorovinylidene.  相似文献   

13.
Half‐sandwiched ruthenium (II) arene complexes with piano stool‐like geometry with the general formula [(p‐cymene)RuClL1] and [(p‐cymene)RuClL2] [where L1 = (Z)‐N′‐((1,3‐diphenyl‐1H‐pyrazol‐4‐yl)methylene)furan‐2‐carbohydrazide and L2 = (Z)‐N′‐((1,3‐diphenyl‐1H‐pyrazol‐4‐yl)methylene)thiophene‐2‐carbohydrazide] were synthesized and characterized. The single crystal X‐ray data revealed that the complexes belong to the same crystal system (monoclinic) with octahedral geometry, where the ruthenium atom is surrounded by hydrazone ligand coordinated through ON atoms, one chloride labile co‐ligand and the remaining three coordination sites covered by an electron cloud of p‐cymene moiety. The interaction between the complexes and DNA/bovine serum albumin (BSA) was evaluated using absorption and emission titration methods showing intercalative modes of interaction. The DNA cleavage ability of the complexes was checked by agarose gel electrophoresis method exhibiting the destruction of DNA duplex arrangement. To understand the interaction between ruthenium complex and DNA/BSA molecule, molecular docking studies were performed. In vitro cytotoxicity of the complexes was examined by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay on human lung cancer cell line, A549, and found that at lower IC50, cell growth inhibition has occurred. Similarly, the IC50 values of the complexes treated with cancerous cell lines have produced a significant amount of lactase dehydrogenase and nitrite content in the culture medium, which were evaluated as apoptosis‐inducing factors, suggesting that the ruthenium (II) arene hydrazone complexes with pyrazole ligands have promising anticancer activities.  相似文献   

14.
Three new binary and ternary metal complexes of Pt(II) with guaifenesin (GFS) drug have been prepared by chelation to guaifenesin ligand (as primary ligand) and glycine amino acid (HGly) and 1,10‐phenanthroline (1,10‐Phen) (as secondary ligands). Characterization was conducted based on elemental analysis, molar conductance, infrared (IR) spectroscopy, thermogravimetric analysis and X‐ray diffraction. The complexes were found to have the formulae [Pt(GFS)2]⋅3H2O ( 1 ), [Pt(GFS)2(Gly)]Cl⋅H2O ( 2 ) and [Pt(GFS)2(Phen)]Cl2 ( 3 ). Magnetic and spectroscopic data revealed complexes 1 – 3 to have octahedral geometry. IR spectra suggested that GFS ligand coordinated in mononegative tridentate mode (OOO) for 1 but in neutral bidentate mode (OO) for 2 and 3 . In addition, HGly behaves as mononegative bidentate coordinated to Pt(II) metal via deprotonated carboxylate O and amino group. IR data also evidenced the bidentate nature of 1,10‐Phen ligand. The molecular and electronic structure of Pt(II) complex 1 was optimized theoretically and the quantum chemical parameters were calculated. Complexes 1 – 3 were screened for their antibacterial activity on Gram‐positive bacteria (Bacillus subtilis and Staphylococcus aureus ) and Gram‐negative bacteria (Escherichia coli and Neisseria gonorrhoeae ) and for their in vitro antifungal activity against Candida albicans . The three Pt(II) complexes showed remarkable biological and cytotoxic activity. The chelates were also screened for their in vitro anticancer activity against the MFC7 breast cell line. Complex 3 showed the highest activity with a low IC50 value of 3.38 μg ml−1.  相似文献   

15.
Water‐soluble arene–ruthenium complexes coordinated with readily available aniline‐based ligands were successfully employed as highly active catalysts in the C?H bond activation and arylation of 2‐phenylpyridine with aryl halides in water. A variety of (hetero)aryl halides were also used for the ortho‐C?H bond arylation of 2‐phenylpyridine to afford the corresponding ortho‐ monoarylated products as major products in moderate to good yields. Our investigations, including time‐scaled NMR spectroscopy and mass spectrometry studies, evidenced that the coordinating aniline‐based ligands, having varying electronic and steric properties, had a significant influence on the catalytic activity of the resulting arene–ruthenium–aniline‐based complexes. Moreover, mass spectrometry identification of the cycloruthenated species, {(η6‐arene)Ru(κ2C,N‐phenylpyridine)}+, and several ligand‐coordinated cycloruthenated species, such as [(η6‐arene)Ru(4‐methylaniline)(κ2C,N‐phenylpyridine)]+, found during the reaction of 2‐phenylpyridine with the arene–ruthenium–aniline complexes further authenticated the crucial roles of these species in the observed highly active and tuned catalyst. At last, the structures of a few of the active catalysts were also confirmed by single‐crystal X‐ray diffraction studies.  相似文献   

16.
The asymmetric unit of the title compound, [Cd(C8H4O4)(C17H8ClN5)(H2O)]n, contains one CdII atom, two half benzene‐1,4‐dicarboxylate (1,4‐bdc) anions, one 11‐chloropyrido[2′,3′:2,3]pyrimidino[5,6‐f][1,10]phenanthroline (L) ligand and one coordination water molecule. The 1,4‐bdc ligands are on inversion centers at the centroids of the arene rings. The CdII atom is six‐coordinated by two N atoms from one L ligand, three carboxylate O atoms from two different 1,4‐bdc ligands and one water O atom in a distorted octahedral coordination sphere. Each CdII center is bridged by the 1,4‐bdc dianions to give a one‐dimensional chain. π–π stacking interactions between L ligands of neighboring chains extend adjacent chains into a two‐dimensional supramolecular (6,3) network. Neighboring (6,3) networks are interpenetrated in an unusual inclined mode, resulting in a three‐dimensional framework. Additionally, the water–carboxylate O—H...O hydrogen bonds observed in the network consolidate the interpenetrating nets.  相似文献   

17.
A heteroleptic bis(tributylphosphine) platinum(II)‐alkynyl complex ( Pt‐1 ) showing broadband visible‐light absorption was prepared. Two different visible‐light‐absorbing ligands, that is, ethynylated boron‐dipyrromethene (BODIPY) and a functionalized naphthalene diimide (NDI) were used in the molecule. Two reference complexes, Pt‐2 and Pt‐3 , which contain only the NDI or BODIPY ligand, respectively, were also prepared. The coordinated BODIPY ligand shows absorption at 503 nm and fluorescence at 516 nm, whereas the coordinated NDI ligand absorbs at 594 nm; the spectral overlap between the two ligands ensures intramolecular resonance energy transfer in Pt‐1 , with BODIPY as the singlet energy donor and NDI as the energy acceptor. The complex shows strong absorption in the region 450 nm–640 nm, with molar absorption coefficient up to 88 000 M ?1 cm?1. Long‐lived triplet excited states lifetimes were observed for Pt‐1 – Pt‐3 (36.9 μs, 28.3 μs, and 818.6 μs, respectively). Singlet and triplet energy transfer processes were studied by the fluorescence/phosphorescence excitation spectra, steady‐state and time‐resolved UV/Vis absorption and luminescence spectra, as well as nanosecond time‐resolved transient difference absorption spectra. A triplet‐state equilibrium was observed for Pt‐1 . The complexes were used as triplet photosensitizers for triplet–triplet annihilation upconversion, with upconversion quantum yields up to 18.4 % being observed for Pt‐1 .  相似文献   

18.
New complexes of arylplatinum(II) and arylplatinum(IV) containing a bridging ligand, 4,4′‐bipyridine, were synthesized by the reaction of starting material of platinum(II) including para‐tolyl groups,[(p‐MeC6H4)2Pt(SMe2)2], with the 4,4′‐bipyridine ligand in 1:1 molar stoichiometry. In the synthesized complexes, the ligand was bonded to the platinum center through the nitrogen donor atoms. To investigate the kinetic reaction of the platinum(II) complex with iodomethane (CH3‐I) as a reagent, the oxidative addition reaction of this reagent with Pt(II) was performed in dichloromethane and a Pt(IV) complex with the octahedral geometry was formed. The synthesized complexes have been characterized by different spectroscopic methods such as FT‐IR, 1H NMR, UV–vis, and elemental analysis. Moreover, the conductivity measurements showed nonelectrolyte characteristics for these complexes. The obtained data showed that the complexes have 1:1 metal‐to‐ligand molar ratio. Also, the oxidative addition reaction of CH3I with the arylplatinum(II) complex at different temperatures was used for obtaining kinetic parameters such as rate constants, activation energy, entropy, and enthalpy of activation using the Microsoft Excel solver. From the acquired data, an SN2 mechanism was suggested for the oxidative addition reaction.  相似文献   

19.
A series of substituted pyrazino[2,3‐f][1,10]‐phenanthroline (Rppl) ligands (with R=Me, COOH, COOMe) were synthetized (see 1 – 4 in Scheme 1). The ligands can be visualized as formed by a bipyridine and a quinoxaline fragment (see A and B ). Homoleptic [Ru(R1ppl)3](PF6)2 and heteropleptic [Ru(R1ppl){(R2)2bpy}2](PF6)2 (R1=H, Me, COOMe and R2=H, Me) metal complexes 5 – 7 and 8 – 13 , respectively, based on these ligands were also synthesized and characterized by conventional techniques (Schemes 2 and 3, resp.). In the heteroleptic complexes, the R1‐ppl ligand reduces at a less‐negative potential than the bpy ligand, reflecting the acceptor property conferred by the quinoxaline moiety. The potentiality of some of these complexes as solar‐cell dyes is discussed.  相似文献   

20.
The cyclometalated monobenzyl complexes [(CbzdiphosR‐CH)ZrBnX] 1 i Pr Cl and 1 Ph I reacted with dihydrogen (10 bar) to yield the η6‐toluene complexes [(CbzdiphosR)Zr(η6‐tol)X] 2 i Pr Cl and 2 Ph I (cbzdiphos=1,8‐bis(phosphino)‐3,6‐di‐tert‐butyl‐9H‐carbazole). The arene complexes were also found to be directly accessible from the triiodide [(CbzdiphosPh)ZrI3] through an in situ reaction with a dibenzylmagnesium reagent and subsequent hydrogenolysis, as exemplified for the η6‐mesitylene complex [(CbzdiphosPh)Zr(η6‐mes)I] ( 3 Ph I ). The tolyl‐ring in 2 i Pr Cl adopts a puckered arrangement (fold angle 23.3°) indicating significant arene‐1,4‐diido character. Deuterium labeling experiments were consistent with an intramolecular reaction sequence after the initial hydrogenolysis of a Zr?C bond by a σ‐bond metathesis. A DFT study of the reaction sequence indicates that hydrogenolysis by σ‐bond metathesis first occurs at the cyclometalated ancillary ligand giving a hydrido‐benzyl intermediate, which subsequently reductively eliminates toluene that then coordinates to the Zr atom as the reduced arene ligand. Complex 2 Ph I was reacted with 2,6‐diisopropylphenyl isocyanide giving the deep blue, diamagnetic ZrII‐diisocyanide complex [(CbzdiphosPh)Zr(CNDipp)2I] ( 4 Ph I ). DFT modeling of 4 Ph I demonstrated that the HOMO of the complex is primarily located as a “lone pair on zirconium”, with some degree of back‐bonding into the C≡N π* bond, and the complex is thus most appropriately described as a zirconium(II) species. Reaction of 2 Ph I with trimethylsilylazide (N3TMS) and 2 i Pr Cl with 1‐azidoadamantane (N3Ad) resulted in the formation of the imido complexes [(CbzdiphosR)Zr=NR′(X)] 5 i Pr Cl‐NAd and 5 Ph I‐NTMS , respectively. Reaction of 2 i Pr Cl with azobenzene led to N?N bond scission giving 6 i Pr Cl , in which one of the NPh‐fragments is coupled with the carbazole nitrogen to form a central η2‐bonded hydrazide(?1), whereas the other NPh‐fragment binds to zirconium acting as an imido‐ligand. Finally, addition of pyridine to 2 i Pr Cl yielded the dark purple complex [(CbzdiphosiPr)Zr(bpy)Cl] ( 7 i Pr Cl ) through a combination of CH‐activation and C?C‐coupling. The structural data and UV/Vis spectroscopic properties of 7 i Pr Cl indicate that the bpy (bipyridine) may be regarded as a (dianionic) diamido‐type ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号