首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation of heavier double‐bond systems without by‐ or side‐product formation is of considerable importance for their application in synthesis. Peripheral functional groups in such alkene homologues are promising in this regard owing to their inherent mobility. Depending on the steric demand of the N‐alkyl substituent R, the reaction of disilenide Ar2Si?Si(Ar)Li (Ar=2,4,6‐iPr3C6H2) with ClP(NR2)2 either affords the phosphinodisilene Ar2Si?Si(Ar)P(NR2)2 (for R=iPr) or P‐amino functionalized phosphasilenes Ar2(R2N)Si? Si(Ar)?P(NR2) (for R=Et, Me) by 1,3‐migration of one of the amino groups. In case of R=Me, upon addition of one equivalent of tert‐butylisonitrile a second amino group shift occurs to yield the 1‐aza‐3‐phosphaallene Ar2(R2N)Si? Si(NR2)(Ar)? P?C?NtBu with pronounced ylidic character. All new compounds were fully characterized by multinuclear NMR spectroscopy as well as single‐crystal X‐ray diffraction and DFT calculations in selected cases.  相似文献   

2.
3.
4.
Silaethenes. III. Preparation and Spectroscopic Characterization of H2Si?CH2, D2Si?CH2, and Me(H)Si?CH2 H2Si?CH2 and D2Si?CH2 are formed together with ethene and propene by gas phase pyrolysis at low pressure (10?2–10?3 mbar) from the corresponding mono- or 1,3-disilacyclobutanes in good yield and are characterized by i.r. and mass spectroscopic methods. Formation of propene can be explained by following reactions of the silaethene intermediate using a “head-to-head” mechanism. H2Si?CH2 can be stored at ?196°C for several months and can be transferred by trap-to-trap distillation in a vacuum system. Similar results are obtained for .  相似文献   

5.
6.
7.
8.
9.
An efficient two‐step synthesis of the first NHC‐stabilized disilavinylidene (Z)‐(SIdipp)SiSi(Br)Tbb ( 2 ; SIdipp=C[N(C6H3‐2,6‐iPr2)CH2]2, Tbb=C6H2‐2,6‐[CH(SiMe3)2]2‐4‐tBu, NHC=N‐heterocyclic carbene) is reported. The first step of the procedure involved a 2:1 reaction of SiBr2(SIdipp) with the 1,2‐dibromodisilene (E)‐Tbb(Br)SiSi(Br)Tbb at 100 °C, which afforded selectively an unprecedented NHC‐stabilized bromo(silyl)silylene, namely SiBr(SiBr2Tbb)(SIdipp) ( 1 ). Alternatively, compound 1 could be obtained from the 2:1 reaction of SiBr2(SIdipp) with LiTbb at low temperature. 1 was then selectively reduced with C8K to give the NHC‐stabilized disilavinylidene 2 . Both low‐valent silicon compounds were comprehensively characterized by X‐ray diffraction analysis, multinuclear NMR spectroscopy, and elemental analyses. Additionally, the electronic structure of 2 was studied by various quantum‐chemical methods.  相似文献   

10.
11.
12.
13.
Reaction of carbene‐stabilized disilicon ( 1 ) with Fe(CO)5 gives the 1:1 adduct L:Si?Si[Fe(CO)4]:L (L:=C{N(2,6‐Pri2C6H3)CH}2) ( 2 ) at room temperature. At raised temperature, however, 2 may react with another equivalent of Fe(CO)5 to give L:Si[μ‐Fe2(CO)6](μ‐CO)Si:L ( 3 ) through insertion of both CO and Fe2(CO)6 into the Si2 core, which represents the first experimental realization of transition metal‐carbonyl‐mediated cleavage of a Si?Si double bond. The structures and bonding of both 2 and 3 have been investigated by spectroscopic, crystallographic, and computational methods.  相似文献   

14.
15.
16.
17.
18.
19.
Novel structures of H2C?C?CLiX (X ? F, Cl) were determined using HF/STO-3G gradient method. Both of the carbenoids have two equilibrium structures, askew and linear forms, at the level of calculation. In the case X?F, the former is more stable, but in the case X=Cl, the latter is more stable. The frontier MOs are given and analyzed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号