首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Today sub-2 μm packed columns are very popular to conduct fast chromatographic separations. The mass-transfer resistance depends on the particle size but some practical limits exist not to reach the theoretically expected plate height and mass-transfer resistance. Another approach applies particles with shortened diffusion path to enhance the efficiency of separations. In this study a systematical evaluation of the possibilities of the separations obtained with 5 cm long narrow bore columns packed with new 2.6 μm shell particles (1.9 μm nonporous core surrounded by a 0.35 μm porous shell, Kinetex™, Core-Shell), packed with other shell-type particles (Ascentis Express™, Fused-Core), totally porous sub-2 μm particles and a 5 cm long narrow bore monolith column is presented. The different commercially available columns were compared by using van Deemter, Knox and kinetic plots. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Data are presented on polar neutral real-life analytes. Comparison of a low molecular weight compounds (MW = 270–430) and a high molecular weight one (MW ∼ 900) was conducted. This study proves that the Kinetex column packed with 2.6 μm shell particles is worthy of rivaling to sub-2 μm columns and other commercially available shell-type packings (Ascentis Express or Halo), both for small and large molecule separation. The Kinetex column offers a very flat C term. Utilizing this feature, high flow rates can be applied to accomplish very fast separations without significant loss in efficiency.  相似文献   

2.
The objective of this study was to evaluate the potential of sub-2 μm totally porous particles and sub-3 μm shell particles for peptide and protein analysis. Specific analytical strategies must be developed for these biomolecules as their importance in the pharmaceutical industry increases and as their structural complexity involves some issues when classical LC conditions are employed. Attention was paid on comparing these different columns in various LC conditions (different temperatures, gradient times, and mobile phase flow rates). The comparison of the different supports was assessed considering columns characteristics (quality of packing, silanol activity, pore size, totally porous or shell particles). In this article, peptides were first analyzed with both column technologies. Similar results to those achieved with low molecular weight compounds were obtained (peak capacity >100 for tgrad around 3 min and columns dimensions of 2.1 mm id × 50 mm), but specific conditions were required (elevated temperature and the use of a volatile ion-pairing reagent, namely TFA). For peptide analysis following tryptic digestion, the goal was to improve peak capacity and resolution because of the large number of generated peptides. For this purpose, longer columns packed with porous sub-2 μm or shell sub-3 μm particles (i.e., 150 mm) and gradient times (i.e., up to 30 min) were tested. On the other hand, proteins in their intact forms have higher molecular weights (MW > 5000 Da) and a tertiary structure, thus requiring different conditions in terms of stationary phase hydrophobicity (C4vs. C18) and pore size (300 vs. 120 Å). In addition, there were issues with adsorption onto the LC system and/or the column itself. This study showed that proteins with MWs lower than 40,000 Da required chromatographic conditions close to those employed for peptide analysis. For larger proteins, a C4 300 Å stationary phase gave the best results, confirming theoretical predictions.  相似文献   

3.
Fekete S  Fekete J 《Talanta》2011,84(2):416-423
The performance of 5 cm long narrow-bore columns packed with 2.6-2.7 μm core-shell particles and a column packed with 1.7 μm totally porous particles was compared in very fast gradient separations of polar neutral active pharmaceutical compounds. Peak capacities as a function of flow-rate and gradient time were measured. Peak capacities around 160-170 could be achieved within 25 min with these 5 cm long columns. The highest peak capacity was obtained with the Kinetex column however it was found that as the flow-rate increases, the peak capacity of the new Poroshell-120 column is getting closer to that obtained with the Kinetex column. Considering the column permeability, peak capacity per unit time and per unit pressure was also calculated. In this comparison the advantage of sub-3 μm core-shell particles is more significant compared to sub-2 μm totally porous particles. Moreover it was found that the very similar sized (dp = 2.7 μm) and structured (ρ = 0.63) new Poroshell-120 and the earlier introduced Ascentis Express particles showed different efficiency. Results obtained showed that the 5 cm long narrow bore columns packed with sub-3 μm core-shell particles offer the chance of very fast and efficient gradient separations, thus these columns can be applied for fast screening measurements of routine pharmaceutical analysis such as cleaning validation.  相似文献   

4.
In the last decade, core–shell particles have gained more and more attention in fast liquid chromatography separations due to their comparable performance with fully porous sub‐2 μm particles and their significantly lower back pressure. Core–shell particles are made of a solid core surrounded by a shell of classic fully porous material. To embrace the developed core–shell column market and use these columns in pharmaceutical analytical applications, 17 core–shell C18 columns purchased from various vendors with various dimensions (50 mm × 2.1 mm to 100 mm × 3 mm) and particle sizes (1.6–2.7 μm) were characterized using Tanaka test protocols. Furthermore, four selected active pharmaceutical ingredients were chosen as test probes to investigate the batch to batch reproducibility for core–shell columns of particle size 2.6–2.7 μm, with dimension of 100 × 3 mm and columns of particle size 1.6 μm, with dimension 100 × 2.1 mm under isocratic elution. Columns of particle size 2.6–2.7 μm were also tested under gradient elution conditions. To confirm the claimed comparable efficiency of 2.6 μm core–shell particles as sub‐2 μm fully porous particles, column performances of the selected core–shell columns were compared with BEH C18, 1.7 μm, a fully porous column material as well.  相似文献   

5.
Commercial C(18) columns packed with superficially porous particles of different sizes and shell thicknesses (Ascentis Express, Kinetex, and Poroshell 120) or sub-2-μm totally porous particles (Acquity BEH) were systematically compared using a small molecule mixture and a complex natural product mixture as text probes. Significant efficiency loss was observed on 2.1-mm id columns even with a low dispersion ultra-high pressure liquid chromatography system. The Kinetex 4.6-mm id column packed with 2.6-μm particles exhibited the best overall efficiency for small molecule separations and the Poroshell 120 column showed better performance for mid-size natural product analytes. The Kinetex 2.1-mm id column packed with 1.7-μm particles did not deliver the expected performance and the possible reasons besides extra column effect have been proved to be frictional heating effect and poor column packing quality. Different column retentivities and selectivities have been observed on the four C(18) columns of different brands for the natural product separation. Column batch-to-batch variability that has been previously observed on the Ascentis Express column was also observed on the Kinetex and Poroshell 120 column.  相似文献   

6.
Fused-Core particles have recently been introduced as an alternative to using sub-2-microm particles in chromatographic separations. Fused-Core particles are composed of a 1.7 microm solid core surrounded by a 0.5 microm porous silica layer (d(p) = 2.7 microm) to reduce mass transfer and increase peak efficiency. The performance of two commercially available Fused-Core particles (Advanced Materials Technology Halo C18 and Supelco Ascentis Express C18) was compared with sub-2-microm particles from Waters, Agilent, and Thermo Scientific. Although the peak efficiencies were only approximately 80% of those obtained by the Waters Acquity particles, the 50% lower backpressure allowed columns to be coupled in series to increase peak efficiency to 92,750 plates. The low backpressure and high efficiencies of the Fused-Core particles offer a viable alternative to using sub-2-microm particles and very-high-pressure LC instrumentation.  相似文献   

7.

Stability-indicating LC methods were developed and validated for the quantitative determination of doripenem, meropenem and tebipenem in the presence of their degradation products formed during forced degradation studies. Isocratic HPLC and UHPLC separations were performed with a core–shell Kinetex 1.7, 2.6 and 5 µm, all C18, 100A, 100 × 2.1 mm columns and the mobile phase composed of acetonitrile and 12 mmol L−1 ammonium acetate in different ratios. The flow rates of the mobile phase were: 0.5 mL min−1 for 1.7 µm column, and 1.0 mL min−1 for 2.6 and 5 µm ones. Detection wavelength was 298 nm and temperature was set at 30 °C. All analysed drugs were exposed to stress conditions which caused their hydrolysis and thermal degradation. The methods were validated by evaluation of linearity, accuracy, precision, selectivity and robustness. Proposed methods were successfully applied for the determination of investigated antibiotics during kinetic studies in aqueous solutions and in the solid state. The advantages of chromatographic procedures which are based on the use of C18 stationary phases with different particle sizes in the analysis of selected carbapenems were discussed.

  相似文献   

8.
Uslu  Bengi  &#;zden  Tugba 《Chromatographia》2013,76(21):1487-1494

High efficiency and less elution are the basic requirements of high-speed chromatographic separation. In this study, a new gradient reverse phase chromatographic methods were developed using HPLC and UPLC systems for simultaneous determination of enalapril maleate (ENL) and hydrochlorothiazide (HCZ) in pharmaceutical dosage forms. The chromatographic separations of ENL and HCZ were achieved on a Waters μ-Bondapak C 18, (300 × 3.9 mm, 10 μm) and Waters Acquity BEH C18 (100 × 2.1 mm, 1.7 μm) columns for HPLC within 5.30 min and UPLC within a short retention time of 1.95 min, respectively. A linear response was observed over the concentration range 0.270–399 μg mL−1 of ENL, 0.260–399 μg mL−1 of HCZ for HPLC system and 0.270–399 μg mL−1 of ENL and 0.065–249 μg mL−1 of HCZ for UPLC system. Also, limit of detection for ENL was 1.848 ng mL−1 and 31.477 ng mL−1 for HCZ, 2.804 ng mL−1 for ENL and 2.943 ng mL−1 for HCZ using HPLC and UPLC, respectively. The proposed methods were validated according to ICH guideline with respect to precision, accuracy, and linearity. Forced degradation studies were also performed for both compounds in bulk drug samples to demonstrate the specificity and stability indicating power of the HPLC method. Comparison of system performance with conventional HPLC was made with respect to analysis time, efficiency, and resolution.

  相似文献   

9.
Small columns packed with core-shell and sub-2 μm totally porous particles and monolith columns are very popular to conduct fast and efficient chromatographic separations. In order to carry out fast separations, short (2-5 cm) and narrow-bore (2-2.1 mm) columns are used to decrease the analyte retention volume. Beside the column efficiency, another significant issue is the extra-column band-spreading. The extra-column dispersion of a given LC system can dramatically decrease the performance of a small very efficient column. The aim of this study was to compare the extra-column peak variance contribution of several commercially available LC systems. The efficiency loss of three different type 5 cm long narrow bore, very efficient columns (monolith, sub-2 μm fully porous and sub-2 μm core-shell packing) as a function of extra-column peak variance, and as a function of flow rate and also kinetic plots (analysis time versus apparent column efficiency) are presented.  相似文献   

10.
Commercially available silica‐based monolithic columns Chromolith RP‐8e, Chromolith RP‐18, and Chromolith HR RP‐18, and polymer‐based monolithic columns ProSwift RP‐1S, ProSwift RP‐2H, and ProSwift RP‐3U varying in pore size and bonded phase have been tested for the fast separation of selected sets of analytes. These mixtures of analytes included small molecules (uracil, caffeine, 1‐phenylethanol, butyl paraben, and anthracene), acylated insulins, and intact proteins (ribonuclease A, cytochrome C, transferrin, apomyoglobin, and thyroglobulin), and covered wide range of chemistries and sizes. Small molecules were well separated with a height equivalent to theoretical plate of 11–26 μm using silica‐based monolithic columns, while organic polymer‐based monoliths excelled in the fast sub 1 min baseline separations of large molecules. A peak capacity of 37 was found for separation of acylated insulins on Chromolith columns using a 3 min gradient at a flow rate of 3 ml/min. Poor recovery of proteins from Chromolith columns and significant peak tailing of small molecules using ProSwift columns were the major obstacles in using monolithic columns in those applications.  相似文献   

11.
Nano-LC columns of different lengths (14–35 cm), 75 μm i.d., were packed with solid-core C18 particles using a conventional HPLC system at low pressure (375 bar) and without expensive tools and fittings. Solid-core particles consist of a solid, non-porous core surrounded with a shell of a porous layer with a very narrow particle size distribution. This geometry allows a faster diffusion of the analytes compared to porous particles, reducing the C term of the Knox plot. Different slurries of packing material were evaluated and tested. The packing procedure was carried out at room temperature and at 70 °C to evaluate the influence of this parameter on the overall process. The synergic action of pressure, temperature and sonication contributed to columns of various lengths in the packing process. The columns were tested at room temperature taking into account the following parameters: Knox plots, specific permeability and peak capacity. Reduced heights of theoretical plates, h, ranged between 3.8 and 5.1 at ν between 2 and 6. An LC-MS test was carried out with a Direct-EI LC-MS instrument.  相似文献   

12.
In this work we demonstrated a facile method for the fabrication of C18 coordination polymer gel in a capillary, called stage-frit, which was efficiently applied to pack sub-2 μm C18 beads into the capillary by a high pressure bomb for the online separation of proteolytic peptides. The back pressure of the column with 10 cm × 75 μm i.d. is regularly lower than 170 bar at a flow rate of 300 nl/min, which could be operated on a common nanoLC system instead of nanoUPLC system due to the good permeability, low back pressure and high mechanical stress of the frit that will totally reduce the cost for the purchase of instrument. The stage-frit allows long-term continuous flow of the solvent and no significant beads loss or pressure instability was observed during the period. The repeatability of retention time for fifteen BSA tryptic peaks was found to be less than 1.08% (RSD) in six time nanoLC-ESI-MS/MS experiments. The average full width at half maximum (FWHM) of peptide peaks is 5.87 s. The sub-2 μm stage-frit nanoLC column showed better sensitivity than the commercial available for large scale proteomic analysis of total tissue proteins from human spleen. The number of identified peptides is approximately 0.4-fold and 0.2-fold higher than that obtained by utilizing commercial columns packed with 3 μm and 1.8 μm C18 materials, respectively. In the field of analytical chemistry, particularly the use of nanoLC systems, stage-frit nanoLC column offers a great potential for the separation of complex mixtures.  相似文献   

13.
The previously reported COmbined FRActional DIagonal Chromatography (COFRA-DIC) methodology, in which a subset of peptides representative for their parent proteins are sorted, is particularly powerful for whole proteome analysis. This peptide-centric technology is built around diagonal chromatography, where peptide separations are crucial. This paper presents high efficiency peptide separations, in which four 250 x 2.1 mm, 5 microm Zorbax 300SB-C18 columns (total length 1 m) were coupled at operating temperatures of 60'C using a dedicated LC oven and conventional LC equipment. The high efficiency separations were combined with the COFRADIC procedure. This extremely powerful combination resulted, for the analysis of serum, in an increase in the uniquely identified peptide sequences by a factor of 2.6, compared to the COFRADIC procedure on a 25 cm column. This is a reflection of the increased peak capacity obtained on the 1 m column, which was calculated to be a factor 2.7 higher than on the 25 cm column. Besides more efficient sorting, less ion suppression was noticed.  相似文献   

14.
Achievement of the highest separation efficiency and quick delivery of results are key requirements in liquid chromatography for enhancing productivity and reducing analysis cost, especially in the pharmaceutical industry. This work concerns two of the most popular current solutions to get fast separations: the use of a silica-based monolithic column (Chromolith Performance RP-18e) and a small-particle packed column (1.8-μm Zorbax Eclipse XDB-C18, which needs dedicated instruments allowing higher backpressures). Both columns succeeded in the full separation of phenols and β-adrenolytic drugs, which are compounds that interact with residual silanols, giving rise to wider peaks. The results were compared with those obtained with a special column designed to avoid silanol interaction, containing 5 μm particles (XTerra MS C18). Chromolith gave the shortest times at the expense of higher solvent consumption at the high flow rates needed. In contrast to other studies, comprehensive conclusions on the chromatographic performance, in terms of selectivity, peak shape, resolution, and analysis time, are derived from the inspection of the whole experimental domain using retention and peak shape modelling. In the literature, column comparison is usually carried out based on the performance for selected mobile phases (very often a single one), which offers deceiving results.  相似文献   

15.
Bengi Uslu  Tugba Özden 《Chromatographia》2013,76(21-22):1487-1494
High efficiency and less elution are the basic requirements of high-speed chromatographic separation. In this study, a new gradient reverse phase chromatographic methods were developed using HPLC and UPLC systems for simultaneous determination of enalapril maleate (ENL) and hydrochlorothiazide (HCZ) in pharmaceutical dosage forms. The chromatographic separations of ENL and HCZ were achieved on a Waters μ-Bondapak C 18, (300 × 3.9 mm, 10 μm) and Waters Acquity BEH C18 (100 × 2.1 mm, 1.7 μm) columns for HPLC within 5.30 min and UPLC within a short retention time of 1.95 min, respectively. A linear response was observed over the concentration range 0.270–399 μg mL?1 of ENL, 0.260–399 μg mL?1 of HCZ for HPLC system and 0.270–399 μg mL?1 of ENL and 0.065–249 μg mL?1 of HCZ for UPLC system. Also, limit of detection for ENL was 1.848 ng mL?1 and 31.477 ng mL?1 for HCZ, 2.804 ng mL?1 for ENL and 2.943 ng mL?1 for HCZ using HPLC and UPLC, respectively. The proposed methods were validated according to ICH guideline with respect to precision, accuracy, and linearity. Forced degradation studies were also performed for both compounds in bulk drug samples to demonstrate the specificity and stability indicating power of the HPLC method. Comparison of system performance with conventional HPLC was made with respect to analysis time, efficiency, and resolution.  相似文献   

16.
The performances of core–shell 2.7 μm and fully porous sub‐2 μm particles packed in narrow diameter columns were compared under the same chromatographic conditions. The stationary phases were compared for fast separation and determination of five new antiviral drugs; daclatasvir, sofosbuvir, velpatasvir, simeprevir, and ledipasvir. The gradient elution was done using ethanol as green organic modifier, which is more environmentally friendly. Although both columns provided very good resolution of the five drugs, core–shell particles had proven to be of better efficiency. Under gradient elution conditions, core–shell particles exhibited faster elution, better peak shape, and enhanced resolution adding to lower system backpressure. The column backpressure on sub‐2 μm particles was more than twice that on core–shell particles. This gives a chance to use conventional high‐performance liquid chromatography conditions without needing special instrumentation as that required for ultra‐high performance liquid chromatography. The method was validated for determination of the five drugs by gradient elution using mobile phase composed of organic modifier ethanol and aqueous part containing 0.75 g sodium octane sufonate and 3.0 g sodium dihydrogen phosphate per liter at pH of 6.15. Detection was done using UV‐detector set at 210 nm. The linearity, accuracy, and precision were found very good within the concentration range of 2–200 μg/mL.  相似文献   

17.
The overall kinetic performance of three production columns (2.1 mm × 100 mm format) packed with 1.6 μm superficially porous CORTECS‐C18+ particles was assessed on a low‐dispersive I‐class ACQUITY instrument. The values of their minimum intrinsic reduced plate heights (hmin = 1.42, 1.57, and 1.75) were measured at room temperature (295 K) for a small molecule (naphthalene) with an acetonitrile/water eluent mixture (75:25, v/v). These narrow‐bore columns provide an average intrinsic efficiency of 395 000 plates per meter. The gradient separation of 14 small molecules shows that these columns have a peak capacity about 25% larger than similar ones packed with fully porous BEH‐C18 particles (1.7 μm) or shorter (50 mm) columns packed with smaller core–shell particles (1.3 μm) operated under very high pressure (>1000 bar) for steep gradient elution (analysis time 80 s). In contrast, because their permeabilities are lower than those of columns packed with larger core–shell particles, their peak capacities are 25% smaller than those of narrow‐bore columns packed with standard 2.7 μm core–shell particles.  相似文献   

18.
Post Column derivatisation (PCD) coupled with high performance liquid chromatography or ultra-high performance liquid chromatography is a powerful tool in the modern analytical laboratory, or at least it should be. One drawback with PCD techniques is the extra post-column dead volume due to reaction coils used to enable adequate reaction time and the mixing of reagents which causes peak broadening, hence a loss of separation power. This loss of efficiency is counter-productive to modern HPLC technologies, -such as UHPLC. We reviewed 87 PCD methods published from 2009 to 2014. We restricted our review to methods published between 2009 and 2014, because we were interested in the uptake of PCD methods in UHPLC environments. Our review focused on a range of system parameters including: column dimensions, stationary phase and particle size, as well as the geometry of the reaction loop. The most commonly used column in the methods investigated was not in fact a modern UHPLC version with sub-2-micron, (or even sub-3-micron) particles, but rather, work-house columns, such as, 250 × 4.6 mm i.d. columns packed with 5 μm C18 particles. Reaction loops were varied, even within the same type of analysis, but the majority of methods employed loop systems with volumes greater than 500 μL.  相似文献   

19.
The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro‐liquid chromatography system. Fully porous, core–shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub‐2 μm fully porous as well as the 2.7 μm core–shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56–2.69) before correction for extra‐column contribution compared to normal‐bore columns. Moreover, the influence of extra‐column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub‐2 μm fully porous particle packed column for ultra‐fast liquid chromatography.  相似文献   

20.
Various recent wide-pore reversed-phase stationary phases were studied for the analysis of intact monoclonal antibodies (mAbs) of 150 kDa and their fragments possessing sizes between 25 and 50 kDa. Different types of column technology were evaluated, namely, a prototype silica-based inorganic monolith containing mesopores of ~250 Å and macropores of ~?1.1 μm, a column packed with 3.6 μm wide-pore core-shell particles possessing a wide pore size distribution with an average around 200 Å and a column packed with fully porous 1.7 μm particles having pore size of ~300 Å. The performance of these wide-pore materials was compared with that of a poly(styrene–divinyl benzene) organic monolithic column, with a macropore size of approximately 1 μm but without mesopores (stagnant pores). A systematic investigation was carried out using model IgG1 and IgG2 mAbs, namely rituximab, panitumumab, and bevacizumab. Firstly, the recoveries of intact and reduced mAbs were compared on the two monolithic phases, and it appeared that adsorption was less pronounced on the organic monolith, probably due to the difference in chemistry (C18 versus phenyl) and the absence of mesopores (stagnant zones). Secondly, the kinetic performance was investigated in gradient elution mode for all columns. For this purpose, peak capacities per meter as well as peak capacities per time unit and per pressure unit (PPT) were calculated at various flow rates, to compare performance of columns with different dimensions. In terms of peak capacity per meter, the core-shell 3.6 μm and fully porous 1.7 μm columns outperformed the two monolithic phases, at a temperature of 60 °C. However, when considering the PPT values, the core-shell 3.6 μm column remained the best phase while the prototype silica-based monoliths became very interesting, mostly due to a very high permeability compared with the organic monolith. Therefore, these core-shell and silica-based monolith provided the fastest achievable separation. Finally, at the maximal working temperature of each column, the core-shell 3.6 μm column was far better than the other one, because it is the only one stable up to 90 °C. Lastly, the loading capacity was also measured on these four different phases. It appeared that the organic monolith was the less interesting and rapidly overloaded, due to the absence of mesopores. On the other hand, the loading capacity of prototype silica-based monolith was indeed reasonable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号