首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
以Ce3+为中心离子,NN-二甲基甲酰胺(DMF)为有机配体,通过温度调节,合成系列形貌和电化学信号不同的铈配合物(Ce-COPs)。筛选出电化学信号最强的多面体状Ce-COP为信号探针。通过凝血酶(TB)与TB适体链之间的特异性识别作用,设计了一种简单通用的TB适体传感器。最优实验条件下,该传感器对TB的线性响应范围为1.0 fmol·L-1~1.0 nmol·L-1,检测限为0.94 fmol·L-1。此外,本方案方法与商品人凝血酶(TM) ELISA试剂盒检测结果相近。结果表明,构建的传感器具有良好的灵敏度、特异性、选择性和稳定性。  相似文献   

2.
本文应用核酸适配体构建了一种新型的电致化学发光检测蛋白体系。两个核酸适配体结合凝血酶的两个不同位点,利用这两核酸适配体与凝血酶的高亲和力构建三明治传感体系检测凝血酶。一个核酸适配体固定在金电极上用来捕获凝血酶,另一个标记有包裹电致化学发光活性物Ru(bpy)32+的二氧化硅纳米颗粒,用来检测电致化学发光信号。此核酸适配体传感器对凝血酶具有特异识别性,电致化学发光信号与凝血酶的浓度直接相关,非特异性识别的牛血红蛋白、牛血清白蛋白不干扰测定。由于在检测的核酸适配体上标记的纳米颗粒包裹有多个发光活性物,因此大大提高了发光效率和灵敏度,此法对凝血酶的线性响应范围为2.0 fmol•L-1~2.0 pmol•L-1,检测限可达1.0 fmol•L-1。  相似文献   

3.
本文通过修饰邻香草醛芳环上羟基的方法,得到两种Schiff碱配体:N,N'-二(2-氧乙酸-3-甲氧基)苄叉乙二胺(H2L1)和N,N′-二(2-氧乙酸-3-甲氧基)苄叉1,3-丙二胺(H2L2),利用水热合成方法以新合成的配体为基点设计合成了2个新的六配位Schiff碱锌(Ⅱ)配合物[Zn(L1)]·7H2O(1)和[Zn(L2)]·7H2O(2),通过元素分析、红外光谱和核磁共振光谱等测试手段对配合物进行了表征,并用X射线单晶衍射测得Zn(Ⅱ)配合物的晶体结构。X射线晶体学研究表明两种配合物晶体结构中都包含多个溶剂水分子,配合物1是以Zn(Ⅱ)为中心扭曲的三方棱柱构型,配合物2构型是以Zn(Ⅱ)为中心扭曲的八面体构型。初步研究了两种配合物的固体发光性,结果表明这两种配合物具有良好的光致发光的性能,有望在光学材料方面得到应用。  相似文献   

4.
本文报道了5种多苯并咪唑锌配合物,即[Zn(TDB)2]Cl2(1)、[Zn(NTB)Cl]Cl (2)、[Zn(EDTB)]Cl2(3)、[Zn2(EGTB)Cl2]Cl2(4)和[Zn2(DTPB)Cl3]Cl (5),其中TDB=1,2-二(2-苯并咪唑)-1,2-二羟基乙烷、NTB=N,N,N-三(2-甲基苯并咪唑)胺、EDTB=N,N,N'',N''-四(2-苯并咪唑亚甲基)-1,2-乙二胺、EGTB=N,N,N'',N''-四(2-苯并咪唑甲基)-1,4-二乙胺基乙二醚以及DTPB=N,N,N'',N",N"-五(2-苯并咪唑甲基)-二乙三胺,对5种蛋白酪氨酸磷酸酶(PTP1B、TCPTP、PTP-MEG2、SHP-1和SHP-2)的抑制作用,结果显示这些配合物强烈抑制PTP1B的活性,其IC50值在0.15~0.28μmol·L-1范围内,但对PTP-MEG2和SHP-1抑制较弱,几乎不抑制SHP-2,而配合物135对与PTP1B高度同源的TCPTP的抑制明显强于24,因而24对PTP1B表现较强的选择性,对PTP1B抑制活性是TCPTP的7~12倍、PTP-MEG2的10~15倍、SHP-1的20~40倍,大约是SHP-2的1000倍,表明配合物的结构影响其对PTP1B的选择性。酶促动力学实验显示24对高度同源的PTP1B和TCPTP抑制类型不同,对PTP1B的抑制为竞争型,而对TCPTP的抑制为非竞争型,推测其选择性可能与其抑制方式有关。荧光滴定表明24与PTP1B和TCPTP发生了1:1结合作用。结合常数分别为1.12×106、5.47×105、1.19×106和4.95×105 L·mol-1,表明它们与PTP1B的结合能力强于TCPTP,与它们对这两种酶的抑制能力一致。  相似文献   

5.
以羧酸配体 2,2''-(1,4-亚苯基双(亚苯基))双(硫二基)二苯甲酸(H2L1)和 2,2''-(2,3,5,6-四甲基-1,4-亚苯基)双(亚甲基)双(硫二基)二苯甲酸(H2L2)分别与金属盐反应,通过溶剂热方法合成了 3个配位聚合物:{[Ni(L1)(H2O)4]·2H2O}n (1)、[Zn(L1)(DMA)2]n(2)和[Co(L2)(DMF)2]n (3),其中DMA=N,N-二甲基乙酰胺,DMF=N,N-二甲基甲酰胺。对配合物1~3进行了单晶X射线衍射、元素分析、红外光谱、热重分析、粉末X射线衍射和固体紫外可见光谱测试和表征。单晶X射线衍射表明:3个配合物均为一维锯齿形链状结构,并通过氢键作用形成三维骨架,且配体均表现为反式构象。此外,对配合物2固态荧光性质进行了研究。  相似文献   

6.
将光活性蒽醌配体L1L2(L1=N2,N7-双((2,2′-联吡啶)-5-基)-9,10-蒽醌-2,7-双酰胺,L2=N2,N7-双(4-((2,2′-联吡啶)-5-基)苯基)-9,10-蒽醌-2,7-双酰胺)与锌离子和亚铁离子通过配位自组装构筑得到一系列配合物1-Zn2-Zn2-Fe,单晶X射线衍射和电喷雾质谱等表征表明这一系列配合物为“2+3”的M2L3型金属-有机超分子结构。将蒽醌基金属-有机笼1-Zn2-Zn应用于甲苯光催化氧化反应中,结果表明笼状催化剂和底物分子间形成超分子主客体化合物是其能有效氧化甲苯的关键。通过对芳香醇的光氧化反应进一步探究1-Zn2-Zn的光氧化性能,实验结果表明催化产率受到取代基的电子效应和底物分子的尺寸的影响。  相似文献   

7.
本文合成了2个新的含乙酰氧肟酸配体的席夫碱钒配合物,[VL1(HAHA)](1)和[VOL2(AHA)](2),其中L1N,N’-二(5-甲基水杨基)乙烷-1,2-二胺的二价阴离子,L2为2-{[2-(2-羟乙基氨基)乙亚胺基]甲基}-6-甲基苯酚的一价阴离子,HAHA和AHA分别为乙酰氧肟酸的一价和二价阴离子,通过物理-化学方法以及单晶X-射线衍射表征了它们的结构。在每个化合物中,V原子都采取八面体配位构型。本文还研究了配合物的热稳定性以及其对幽门螺旋杆菌脲酶的抑制活性。在浓度为100μmol·L-1时,配合物12对脲酶的抑制率分别为37.2%和81.5%,其中配合物2的IC50值为21.5μmol·L-1。分子对接研究表明配合物2与脲酶活性中心存在有效的作用力。  相似文献   

8.
合成了一种新型的一维(1D)羰基配位聚合物[Cu (BGPD)(DMA)(H2O)]·DMA (记为Cu-BD,H2BGPD=N,N′-双(甘氨酰)均苯四甲酸二酰亚胺,DMA=二甲基乙酰胺),并考察了其用作锂离子电池正极材料的电化学性能。电化学测试结果表明,Cu-BD正极在50 mA·g-1的电流密度下循环100圈后仍然保留50 mAh·g-1的比容量,具有较好的循环稳定性。Cu-BD电极反应机理研究表明,BGPD2-配体和Cu (Ⅱ)离子在充放电过程中都可能参与了电子转移过程。  相似文献   

9.
二丁基硫醚的合成及其萃取分离钯、铂的研究   总被引:1,自引:0,他引:1  
用Na2S·9H2O和1-溴丁烷合成了二丁基硫醚(简写为M)。以二丁基硫醚为萃取剂进行了钯、铂萃取分离的研究,并采用正交实验,得出了钯、铂分离的最佳条件为cM=0.344 mol·L-1,O/A=1∶1,t=6 min,cH+=2 mol·L-1。测得二丁基硫醚萃取钯的容量大于17 g·L-1相似文献   

10.
以1,8-二甲基-1,4,8,11-四氮杂环十四烷为原料,以N,N'-二叔丁氧羰基-2-甲璜酰氧基-1,3-二氨基丙烷为烷基化试剂,合成了cyclam衍生物:1,8-二(N,N'-二叔丁氧羰基-1,3-二氨基异丙基)-4,11-二甲基-1,4,8,11-四氮杂环十四烷(L1);及其对应的系列单核金属配合物,Zn(L1)Cl2 (1),Ni(L1)Cl2 (2)和Cu(L1)Cl2 (3);核磁结果表明,L1为C2对称结构,且cyclam环上每一个亚甲基碳上的2个氢化学不等价;利用2D[1H,15N]HSQC对比配体配位前后N-H化学位移的变化,确定配合物的结构是金属与配体cyclam环上的4个氮原子配位;利用变温核磁1H NMR和13C NMR,结合2D[1H,15N]HSQC核磁共振波谱表明,配合物1在溶液中主要以两种构型并存,并主要以trans-Ⅲ构型存在。此外,用凝胶电泳研究了配体与单核金属配合物对超螺旋pBR322质粒DNA切割活性;实验结果表明,配合物3在抗坏血酸存在的条件下具有核酸酶活性,而配体(L1),配合物1和配合物2在实验条件下,无论是氧化切割还是水解切割都显阴性。  相似文献   

11.
《Electroanalysis》2006,18(15):1449-1456
A label‐free electrochemical impedance based protein biosensor was introduced by using aptamer as recognition tool. Our sensing protocol utilizes the affinity interaction between the thrombin and the self‐assembled DNA aptamer on gold electrode. This specific interaction increases the electrode interfacial electronic transfer resistance. The resistance signal is then “amplified” by using guanidine hydrochloride to denature the captured thrombin for increasing the hydrated radius of the thrombin, consequently blocking the electron transfer from solution to electrode. The sensor sensitivity is improved using this strategy and as low as 1.0×10?14 mol L?1 thrombin (enzymatic activity 10 U/mg) can be detected out.  相似文献   

12.
LIU  Xueping  ZHOU  Zhenhua  ZHANG  Liangliang  TAN  Zhongyang  SHEN  Guoli  YU  Ruqin 《中国化学》2009,27(10):1855-1859
A simple and rapid colorimetric approach for the determination of adenosine has been developed via target inducing aptamer structure switching, thus leading to Au colloidal solution aggregation. In the absence of the analytes, the aptamer/gold nanoparticle (Au NP) solution remained well dispersed under a given high ionic strength condition in that the random‐coil aptamer was readily wrapped on the surface of the Au NPs, which resulted in the enhancement of the repulsive force between the nanoparticles due to the high negative charge density of DNA molecules. While in the presence of adenosine, target‐aptamer complexes were formed and the conformation of the aptamer was changed to a folded structure which disfavored its adsorption on the Au NP surface, thus leading to the reduction of the negative charge density on each Au NP and then the reduced degree of electrostatic repulsion between Au nanoparticles. As a result, the aggregation of the Au colloidal solution occurred. The changes of the absorption spectrum could be easily monitored by a UV‐Vis spectrophotometer. A linear correlation exists between the ratio of the absorbance of the system at 522 to 700 nm (A522 nm/A700 nm) and the concentration of adenosine between 100 nmol·L?1 and 10 µmol·L?1, with a detection limit of 51.5 nmol·L?1.  相似文献   

13.
An electrochemiluminescence (ECL) biosensor for simultaneous detection of adenosine and thrombin in one sample based on bifunctional aptamer and N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanoparticles (ABEI-AuNPs) was developed. A streptavidin coated gold nanoparticles modified electrode was utilized to immobilize biotinylated bifunctional aptamer (ATA), which consisted of adenosine and thrombin aptamer. The ATA performed as recognition element of capture probe. For adenosine detection, ABEI-AuNPs labeled hybridization probe with a partial complementary sequence of ATA reacted with ATA, leading to a strong ECL response of N-(aminobutyl)-N-(ethylisoluminol) enriched on ABEI-AuNPs. After recognition of adenosine, the hybridization probe was displaced by adenosine and ECL signal declined. The decrease of ECL signal was in proportion to the concentration of adenosine over the range of 5.0 × 10−12–5.0 × 10−9 M with a detection limit of 2.2 × 10−12 M. For thrombin detection, thrombin was assembled on ATA modified electrode via aptamer–target recognition, another aptamer of thrombin tagged with ABEI-AuNPs was bounded to another reactive site of thrombin, producing ECL signals. The ECL intensity was linearly with the concentration of thrombin from 5 × 10−14 M to 5 × 10−10 M with a detection limit of 1.2 × 10−14 M. In the ECL biosensor, adenosine and thrombin can be detected when they coexisted in one sample and a multi-analytes assay was established. The sensitivity of the present biosensor is superior to most available aptasensors for adenosine and thrombin. The biosensor also showed good selectivity towards the targets. Being challenged in real plasma sample, the biosensor was confirmed to be a good prospect for multi-analytes assay of small molecules and proteins in biological samples.  相似文献   

14.
Reaction of the N-tosyl-1,2-diaminopropane or N-tosyl-1,2-diaminobenzene with salicylaldehyde forms two new asymmetric sulfonamide Schiff bases, N-[2-(2-hydroxybenzylideneamino)propyl]-4-methylbenzenesulfonamide (H2L1 ) and N-[2-(2-hydroxybenzylideneamino)phenyl]-4-methylbenzenesulfonamide (H2L2 ). Two new complexes [CuL x (H2O)] (x = 1 for 1, x = 2 for 2) constructed from H2L x have been prepared and characterized via X-ray single-crystal diffraction, elemental analysis, FT-IR, UV-Vis, TGA, quantum chemical calculations, and photoluminescence measurements. Weak C–H ··· π, hydrogen bonds, π–π, and Cu ··· O weak interactions lead to 3-D supramolecular architecture, 1, and 1-D double chain, 2.  相似文献   

15.
The small nanosilver was prepared by the sodium borohydride procedure. The aptamer was used to modify nanosilver to obtain a nanosilver‐aptamer (AgssDNA) SERS probe for the determination of melamine. In pH 6.6 phosphate buffer solution and in the presence of NaCl, the AgssDNA probe specifically combined with melamine to release nanosilver particles that were aggregated to nanosilver clusters, which exhibited SERS effect at 240 cm?1. When melamine concentration increased, the nanosilver clusters increased, and the SERS intensity at 240 cm?1 increased. The increased SERS intensity ΔI240 cm?1 is linear to melamine concentration in the range of 6.3–403.6 μg·L?1, with a detection limit of 1.2 μg·L?1. This assay was applied to determination of melamine in milk, with satisfactory results.  相似文献   

16.
A highly selective electrochemiluminescent biosensor for the detection of target nephrotoxic toxin, ochratoxin A (OTA), was developed using a DNA aptamer as the recognition element and N-(4-aminobutyl)-N-ethylisoluminol (ABEI) as the signal-producing compound. The electrochemiluminescent aptamer biosensor was fabricated by immobilizing aptamer complementary DNA 1 sequence onto the surface of a gold-nanoparticle (AuNP)-modified gold electrode. ABEI-labeled aptamer DNA 2 sequence hybridized to DNA 1 and was utilized as an electrochemiluminescent probe. A decreased electrochemiluminescence (ECL) signal was generated upon aptamer recognition of the target OTA, which induced the dissociation of DNA 2 (ABEI-labeled aptamer electrochemiluminescent probe) from DNA 1 and moved it far away from the electrode surface. Under the optimal conditions, the decreased ECL intensity was proportional to an OTA concentration ranging from 0.02 to 3.0 ng mL-1, with a detection limit of 0.007 ng mL-1. The relative standard deviation was 3.8% at 0.2 ng mL-1 (n = 7). The proposed method has been applied to measure OTA in naturally contaminated wheat samples and validated by an official method. This work demonstrates the combination of a highly binding aptamer with a highly sensitive ECL technique to design an electrochemiluminescent biosensor, which is a very promising approach for the determination of small-molecule toxins.  相似文献   

17.
We have developed a “turn on” model of an electrochemiluminescence (ECL) based assay for lead ions. It is based on the formation of a G-quadruplex from an aptamer labeled with quantum dots (QDs) and placed on an electrode modified with of graphene and gold nanoparticles (AuNPs). A hairpin capture probe was labeled with a thiol group at the 5′-end and with an amino group at the 3′-end. It was then self-assembled on the electrode modified with graphene and AuNPs. In the absence of Pb(II), the amino tag on one end of the hairpin probe is close to the surface of the electrode and therefore unable to interact with the QDs because of steric hindrance. The ECL signal is quite weak in this case. If, however, Pb(II) is added, the stem-loop of the aptamer unfolds to form a G-quadruplex. The amino group at the 3′-end will become exposed and can covalently link to a carboxy group on the surface of the CdTe QDs. This leads to strong ECL. Its intensity increases (“turns on”) with the concentration of Pb(II). Such a “turn-on” method does not suffer from the drawbacks of “turn-off” methods. ECL intensity is linearly related to the concentration of Pb(II) in the 10 p mol·L?1 to 1 n mol·L?1 range, with a 3.8 p mol·L?1 detection limit. The sensor exhibits very low detection limits, good selectivity, satisfying stability, and good repeatability.
Figure
A “turn on” model of ECL method was developed based on G-quadruplex of Graphene/AuNPs of aptamer probe by using quantum dots as label. ECL intensity is increased with the increase of Pb2+ concentration. The responsive ECL intensity was linearly related to the Pb2+ concentration in the range of 1.0?×?10?11?~?1.0?×?10?9 mol·L?1, with a detection limit of 3.82?×?10?12 mol·L?1.  相似文献   

18.
A novel biosensor by electrochemically codeposited Pt nanoclusters and DNA film was constructed and applied to detection of dopamine (DA) and uric acid (UA) in the presence of high concentration ascorbic acid (AA). Scanning electron microscopy and X‐ray photoelectron spectroscopy were used for characterization. This electrode was successfully used to resolve the overlapping voltammetric response of DA, UA and AA into three well‐defined peaks with a large anodic peak difference (ΔEpa) of about 184 mV for DA and 324 mV for UA. The catalytic peak current obtained from differential pulse voltammetry was linearly dependent on the DA concentration from 1.1× 10?7 to 3.8×10?5 mol·L?1 with a detection limit of 3.6×10?8 mol·L?1 (S/N=3) and on the UA concentration from 3.0×10?7 to 5.7×10?5 mol·L?1 with a detection limit of 1.0×10?7 mol·L?1 with coexistence of 1.0×10?3 mol·L?1 AA. The modified electrode shows good sensitivity and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号