首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper is devoted to studying charged anisotropic static spherically symmetric solutions through gravitationally decoupled minimal geometric deformation technique in f(R) gravity. For this purpose, we first consider the known isotropic Krori–Barua solution for f(R) Starobinsky model in the interior of a charged stellar system and then include the effects of two types of anisotropic solutions. The corresponding field equations are constructed and the unknown constants are obtained from junction conditions. We analyze the physical viability and stability of the resulting solutions through effective energy density, effective radial/tangential pressure, energy conditions, and causality condition. It is found that both solutions satisfy the stability range as well as other physical conditions for specific values of charge as well as model parameter and anisotropic constant. We conclude that the modified theory under the influence of charge yields more stable behavior of the self-gravitating system.  相似文献   

2.
In this paper, we study exact charged anisotropic spherical solutions through extended geometric deformation technique. For this purpose, we consider the singularity-free Krori–Barua solution and extend it to attain two analytical anisotropic models in the presence of the electromagnetic field. We examine energy bounds as well as causality condition for the star Her X-I to analyze the viability of the obtained solutions. It is found that both models show realistic behavior as they satisfy all physical constraints as well as stability criterion. We conclude that the extended gravitational decoupling approach provides more stable results for the stellar system in contrast to minimal geometric deformation.  相似文献   

3.
This paper investigates exact models for spherically symmetric anisotropic matter distribution in 2+1-dimensions via gravitational decoupling approach. For this purpose, we choose known spherical solutions with perfect fluid in the absence as well as the presence of cosmological constant and extend them to anisotropic models by imposing a constraint on matter components. The physical viability and stability of our developed solutions are investigated through graphical analysis of density, radial/tangential pressure, energy conditions, and causality criterion. It is found that both solutions are stable and satisfy all the physical requirements for the feasible choice of the model parameters.  相似文献   

4.
《Physics Reports》1997,286(2):53-130
We review and discuss possible causes for the appearance of local anisotropy (principal stresses unequal) in self-gravitating systems and present its main consequences. We consider both Newtonian and general relativistic examples. The results emerging from the stability analysis hint at the potential relevance of local anisotropy in the evolution of self-gravitating objects. In this respect particular attention is devoted to the Jeans instability criterion and to the occurrence of cracking in anisotropic spheres. A selection of solutions to Einstein equations for anisotropic matter is analyzed. The specific consequences derived from local anisotropy in these solutions, are exhibited. The differences between two different definitions of energy, within a slowly evolving distribution of anisotropic fluid, are discussed in detail. The conspicuous role played by the Weyl and shear tensors and their relationship with anisotropy of the fluid are brought out.  相似文献   

5.
We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the universe transits to an isotropic flat FRW universe accommodating the present acceleration. A class of new cosmological solutions is obtained for an anisotropic universe in case an initial anisotropy exists which is bigger than the value determined by the parameter of the kinetic part of the field. Later, an autonomous system of equations for an axially symmetric Bianchi-I universe with phantom field in an exponential potential is studied. We discuss the stability of the cosmological solutions.   相似文献   

6.
This paper presents our study of the nonlinear stability of a new anisotropic continuum traffic flow model in which the dimensionless parameter or anisotropic factor controls the non-isotropic character and diffusive influence.In order to establish traffic flow stability criterion or to know the critical parameters that lead,on one hand,to a stable response to perturbations or disturbances or,on the other hand,to an unstable response and therefore to a possible congestion,a nonlinear stability criterion is derived by using a wavefront expansion technique.The stability criterion is illustrated by numerical results using the finite difference method for two different values of anisotropic parameter.It is also been observed that the newly derived stability results are consistent with previously reported results obtained using approximate linearisation methods.Moreover,the stability criterion derived in this paper can provide more refined information from the perspective of the capability to reproduce nonlinear traffic flow behaviors observed in real traffic than previously established methodologies.  相似文献   

7.
We explicitly demonstrate the existence of static global defect solutions of arbitrary dimensionality whose energy does not diverge at spatial infinity, by considering maximally symmetric solutions described by an action with non-standard kinetic terms in a D+1 dimensional Minkowski space-time. We analytically determine the defect profile both at small and large distances from the defect centre. We study the stability of such solutions and discuss possible implications of our findings, in particular for dark matter and charge fractionalization in graphene.  相似文献   

8.
A family of static solutions of the Einstein field equations with spherical symmetry for a locally anisotropic fluid with homogeneous energy density is obtained. These solutions depend on two adjustable parameters related to degree of anisotropy of the fluid. Some known solutions may be recovered for specific values of these parameters. As a difference to other known solutions it is possible to change the grade of anisotropy of the model, keeping the same functional dependence on the coordinates. By means of a slow adiabatic contraction, the stability of the obtained solutions is studied. Also, it is shown, how it is possible to enhance the stability of the models by adjusting the parameters, and to obtain more compact configurations than those obtained with other similar anisotropic solutions, while the dominant or strong energy condition holds within the sphere.  相似文献   

9.
We obtain two new families of compact solutions for a spherically symmetric distribution of matter consisting of an electrically charged anisotropic fluid sphere joined to the Reissner–Nordstrom static solution through a zero pressure surface. The static inner region also admits a one parameter group of conformal motions. First, to study the effect of the anisotropy in the sense of the pressures of the charged fluid, besides assuming a linear equation of state to hold for the fluid, we consider the tangential pressure p to be proportional to the radial pressure p r , the proportionality factor C measuring the grade of anisotropy. We analyze the resulting charge distribution and the features of the obtained family of solutions. These families of solutions reproduce for the value C=1, the conformal isotropic solution for quark stars, previously obtained by Mak and Harko. The second family of solutions is obtained assuming the electrical charge inside the sphere to be a known function of the radial coordinate. The allowed values of the parameters pertained to these solutions are constrained by the physical conditions imposed. We study the effect of anisotropy in the allowed compactness ratios and in the values of the charge. The Glazer’s pulsation equation for isotropic charged spheres is extended to the case of anisotropic and charged fluid spheres in order to study the behavior of the solutions under linear adiabatic radial oscillations. These solutions could model some stage of the evolution of strange quark matter fluid stars.  相似文献   

10.
连增菊 《中国物理 B》2011,20(7):76401-076401
We present the solutions of the interaction energy for a colloid system with a charged rod-like macromolecule immersed in a bulk electrolyte and moving along the axis of a circular orifice or disk (orifice/disk).The calculation requires a numerical computation of the surface charge profiles,which result from a constant surface potential on the macromolecule and the orifice/disk.In the calculation,remarkable divergences of the surface charge emerge on the edges of the macromolecule and the orifice/disk,which are well-known edge effects.The anisotropic distribution of the surface charge (effective dipole) results in an attraction between these two charged objects.This attraction is enhanced with the increase of the screening length of the system for both the orifice and the disk systems.However,the sizes of the orifice and the disk reduce to different effects on the interaction energy.  相似文献   

11.
We show that explicit radiation-material coupling, which is essentially always stable for infrared radiative transfer is conditionally stable in the high energy density regime. A linearized stability analysis is first performed for a simple infinite-medium problem that yields both a criterion for unconditional stability, a time-step restriction that applies for conditional stability, and a time-step criterion that always applies for non-oscillatory solutions. This analysis is then extended to include space dependence with the result that the system is always conditionally stable, but with a time step restriction somewhat different from the infinite-medium case. Nonetheless, the time step restriction for non-oscillatory solutions remains the same. Computations are presented that confirm the predictions of our analysis, and conclusions are given.  相似文献   

12.
This paper investigates the dynamics of charged spherical collapse with anisotropic matter configuration in the context of energy-momentum squared gravity. This newly developed proposal resolves the big-bang singularity and yields the physically viable cosmological results in the early time universe. We establish dynamical equations through Misner-Sharp technique and analyze the effects of charge, anisotropy, effective matter variables and dark source terms on the collapse rate. A relation between Weyl scalar, fluid parameters and dark source terms is also established. The spacetime is not conformally flat due to the presence of anisotropic pressure, multivariate functions and their derivatives. In order to obtain conformally flat spacetime, we consider a specific model of this gravity, neglect the impact of charge and assume the isotropic matter distribution which yields homogeneity of the energy density and conformally flat spacetime. We conclude that positive dark source terms, anisotropy and charge yield the action of a repulsive force which enhances the stability of the system and hence diminishes the collapse rate.  相似文献   

13.
W. Boucher 《Nuclear Physics B》1984,242(2):282-296
Witten's positive energy theorem and its generalizations can be viewed as stating that supersymmetric solutions of any supergravity theory are stable. In this paper we give a criterion to test the stability of non-supersymmetric solutions of supergravity theories and solutions of theories which cannot be embedded in a supergravity theory. Previously some of these solutions might have been considered to be unstable. In particular, we show that the non-supersymmetric stationary point of the scalar potential of the gauged N = 5 supergravity theory is stable. We also give an elegant derivation of the Breitenlohner-Freedman condition for (small fluctuation) stability.  相似文献   

14.
The propagation of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions is analyzed. By using the reductive perturbation theory, the Kadomtsev-Petviashivili (KP) equation is derived. A Sagdeev potential has been investigated. This potential is used to study the stability conditions for existence of solitonic solutions. Also, it is shown that a rarefactive soliton can exist in most of the cases. The energy of the soliton has been calculated and by using the standard normal-mode analysis a linear dispersion relation has been obtained. The effects of variable dust charge on the amplitude, width and energy of soliton and its effects on the angular frequency of linear wave are also discussed.  相似文献   

15.
We investigate some structure scalars developed through Riemann tensor for self-gravitating cylindrically symmetric charged dissipative anisotropic fluid. We show that these scalars are directly related to the fundamental properties of the fluid. We formulate dynamical-transport equation as well as the mass function by including charge which are then expressed in terms of structure scalars. The effects of electric charge are investigated in the structure and evolution of compact objects. Finally, we show that all possible solutions of the field equations can be written in terms of these scalars.  相似文献   

16.
We provide new exact solutions to the Einstein–Maxwell system of equations which are physically reasonable. The spacetime is static and spherically symmetric with a charged matter distribution. We utilise an equation of state which is quadratic relating the radial pressure to the energy density. Earlier models, with linear and quadratic equations of state, are shown to be contained in our general class of solutions. The new solutions to the Einstein–Maxwell are found in terms of elementary functions. A physical analysis of the matter and electromagnetic variables indicates that the model is well behaved and regular. In particular there is no singularity in the proper charge density at the stellar centre unlike earlier anisotropic models in the presence of the electromagnetic field.  相似文献   

17.
In the present paper, we explore the existence of wormhole solutions using conformal symmetries in Rastall theory of gravity. For this purpose, we take spherical symmetric model filled with matter distribution as anisotropic fluid. For the sake of simplifications, we consider the energy density profiles of Gaussian and Lorentzian distributions of non-commutative geometry. Using both these distributions, we obtain analytic wormhole solutions in terms of some special math functions like gamma, exponential and hypergeometric functions. For graphical illustrations, we take some appropriate choices of the free parameters along with different values of Rastall parameter. It is seen that in both cases, the obtained wormhole solutions satisfy the basic criteria of wormhole existence. Further, we describe the possible constraints for the positivity of active gravitational mass in both distributions. We also explore the stability of obtained wormholes solutions by utilizing the modified equilibrium condition in terms of four different forces in Rastall theory. It is concluded that the constructed solutions are stable and physically viable.  相似文献   

18.
In this paper, we study topological AdS black branes of (n+1)-dimensional Einstein–Maxwell-dilaton theory and investigate their properties. We use the area law, surface gravity and Gauss law interpretations to find entropy, temperature and electrical charge, respectively. We also employ the modified Brown and York subtraction method to calculate the quasilocal mass of the solutions. We obtain a Smarr-type formula for the mass as a function of the entropy and the charge, compute the temperature and the electric potential through the Smarr-type formula and show that these thermodynamic quantities coincide with their values which are calculated through using the geometry. Finally, we perform a stability analysis in the canonical ensemble and investigate the effects of the dilaton field and the size of black brane on the thermal stability of the solutions. We find that large black branes are stable but for small black brane, depending on the value of dilaton field and type of horizon, we encounter with some unstable phases.  相似文献   

19.
Recently, fabricating type-II vertical van der Waals (vdWs) heterostructure is a promising material for hydrogen production. The absorption capability, charge density distributions, band alignments and electronic properties of the monolayers and heterostructures are systematically investigated using computational studies. Using ab initio molecular dynamics, binding energy and phonon calculations, the stability of the heterostructures are verified. Both heterostructures are type-II materials, which can increase the separation of charge carriers. Moreover, the charge density difference and the potential drop across the interface of MSe2/BSe creates a high built-in electric field that can prevent the recombination of charge carriers. We found that the visible-light optical properties of both heterostructures are much enhanced with suitable bandgap energy for water splitting. The band alignment suggests that the heterostructures straddle water redox potentials in acid solutions (0 < pH < 7). Our study predicted that MSe2/BSe vdW heterostructures have great potential for photocatalytic hydrogen production.  相似文献   

20.
Electromagnetic instability of an unmagnetized homogeneous relativistic plasma with an anisotropic velocity distribution having a center of symmetry is analyzed. A stability criterion is derived for slowly varying long-wavelength perturbations. The criterion is formulated as a set of equalities that are not valid for ellipsoidal velocity distributions, but can be satisfied for other anisotropic distributions. The relativistic case is special only in that the rest mass is replaced with the relativistic one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号