首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kubán P  Hauser PC 《Electrophoresis》2005,26(16):3169-3178
Quantitative total ionic analysis of alcoholic and nonalcoholic beverages was performed by microchip capillary electrophoresis with external contactless conductivity detection. An electrolyte solution consisting of 10.5 mM histidine, 50 mM acetic acid, and 2 mM 18-crown-6 at pH 4.1 was used for the determination of NH(4) (+), K(+), Ca(2+), Na(+), and Mg(2+). Fast analysis of Cl(-), NO(3) (-), and SO(4) (2-) was achieved in 20 mM 2-(N-morpholino)ethanesulfonic acid /histidine electrolyte solution at pH 6.0 and the simultaneous separation of up to 12 inorganic and organic anions was performed in a solution containing 10 mM His and 7 mM glutamic acid at pH 5.75. Limits of detection ranged from 90 to 250 mug/L for inorganic cations and anions, and from 200 to 2000 mug/L for organic anions and phosphate. Calibration curves showed linear dependencies over one to two orders of magnitude when the stacking effect was minimized by injecting standard solutions prepared in background electrolyte solutions. Total analysis times of 35 and 90 s were achieved for the determination of 5 inorganic cations and for the simultaneous determination of 12 inorganic and organic anions, respectively, which represents a considerable reduction of analysis time compared to conventional separation methods used in food analysis.  相似文献   

2.
A portable capillary electrophoretic system with contactless conductivity detection was used for fingerprint analysis of postblast explosive residues from commercial organic and improvised inorganic explosives on various surfaces (sand, concrete, metal witness plates). Simple extraction methods were developed for each of the surfaces for subsequent simultaneous capillary electrophoretic analysis of anions and cations. Dual‐opposite end injection principle was used for fast (<4 min) separation of 10 common anions and cations from postblast residues using an optimized separation electrolyte composed of 20 mM MES, 20 mM l ‐histidine, 30 μM CTAB and 2 mM 18‐crown‐6. The concentrations of all ions obtained from the electropherograms were subjected to principal component analysis to classify the tested explosives on all tested surfaces, resulting in distinct cluster formations that could be used to verify (each) type of the explosive.  相似文献   

3.
A simple, selective, and sensitive method for the simultaneous determination of anions (sulfate, nitrate, and chloride) and cations (sodium, ammonium, potassium, magnesium, and calcium) in acid rain waters was developed using ion-exclusion/ cation-exchange chromatography with conductimetric detection. A weakly acidic cation-exchange resin column (Tosho TSKgel OA-PAK-A) and a sulfosalicylic acid-methanol-water eluent was used. With a mobile phase comprising 1.25 mM sulfosalicylic acid in methanol-water (7.5:92.5) at 1.2 ml/min, simultaneous separation and detection of the above anions and cations was achieved in about 30 min. Linear calibration plots of peak area versus concentration were obtained over the concentration ranges 0-1.0 mM for anions (R=0.9991) and 0-0.5 mM for cations (R=0.9994). Detection limits calculated at S/N=3 ranged from 4.2 to 14.8 ppb for the anions and from 2.4 to 12.1 ppb for the cations. The reproducibility of retention times was 0.14-0.15% relative standard deviation (RSD) for anions and 0.18-0.31% for cations, and reproducibility of chromatographic peak areas was 1.22-1.75% RSD for anions and 1.81-2.10% for cations. The method was applied successfully to the simultaneous determination of anions and cations in aerosols transported from mainland China to central Japan, as determined by a meteorological satellite data analyzer.  相似文献   

4.
Short permanently coated reversed-phase silica based monolithic columns have been investigated for the rapid separation of inorganic anions and cations. One 2.5 x 0.46 cm column was permanently coated with didodecyldimethylammonium (DDAB), for anion analysis; and a second 5.0 x 0.46 cm column was coated with dioctylsulphosuccinnate (DOSS), for cation analysis. The use of a single combined eluent of 2.5 mM phthalate/1.5 mM ethylenediamine, at flow rates of between 4.0 and 8.0 mL/min, resulted in the rapid separation of 8 anions (in under 100 s) and 5 cations (in under 100 s) on the above columns when used individually, with detection limits for common anions ranging from approximately 0.25 to 5 mg/L, and between 2.5 and 50 mg/L for alkaline earth metals, by direct and indirect conductivity detection, respectively. However, with both columns subsequently connected in parallel, with the eluent delivered using a flow splitter from a single isocratic pump, the simultaneous analysis of anions and cations was also possible, based on a single conductivity detector. The potential of this system for the rapid, complete screening of water samples for multiple common anions and cations is shown.  相似文献   

5.
Novel CE methods have been developed on portable instrumentation adapted to accommodate a capacitively coupled contactless conductivity detector for the separation and sensitive detection of inorganic anions and cations in post‐blast explosive residues from homemade inorganic explosive devices. The methods presented combine sensitivity and speed of analysis for the wide range of inorganic ions used in this study. Separate methods were employed for the separation of anions and cations. The anion separation method utilised a low conductivity 70 mM Tris/70 mM CHES aqueous electrolyte (pH 8.6) with a 90 cm capillary coated with hexadimethrine bromide to reverse the EOF. Fifteen anions could be baseline separated in 7 min with detection limits in the range 27–240 μg/L. A selection of ten anions deemed most important in this application could be separated in 45 s on a shorter capillary (30.6 cm) using the same electrolyte. The cation separation method was performed on a 73 cm length of fused‐silica capillary using an electrolyte system composed of 10 mM histidine and 50 mM acetic acid, at pH 4.2. The addition of the complexants, 1 mM hydroxyisobutyric acid and 0.7 mM 18‐crown‐6 ether, enhanced selectivity and allowed the separation of eleven inorganic cations in under 7 min with detection limits in the range 31–240 μg/L. The developed methods were successfully field tested on post‐blast residues obtained from the controlled detonation of homemade explosive devices. Results were verified using ion chromatographic analyses of the same samples.  相似文献   

6.
We developed a capillary zone electrophoresis method with indirect UV detection for determination of ammonium cations and alkali and alkaline earth metal cations in jellyfish. As the background electrolyte, a mixture of N-methylbenzylamine, citrate, and 18-crown-6 was used for the complete separation of all analyte cations. The limits of detection were 0.13 - 0.34 mg l(-1) at a signal-to-noise ratio of three. The values of the relative standard deviation of peak area were 3.2 - 4.9%. The proposed method successfully determined the above analyte cations in jellyfish for approximately 4 min.  相似文献   

7.
The simultaneous ion-exclusion/cation-exchange separation column packed with a polymethacrylate-based weakly acidic cation-exchange resin of 3 microm particle size was used to achieve the simultaneous high-speed separation of anions and cations (Cl(-), NO3(-), SO4(2-), Na(+), K(+), NH4(+), Ca(2+) and Mg(2+)) commonly found in environmental samples. The high-speed simultaneous separation is based on a combination of the ion-exclusion mechanism for the anions and the cation-exchange mechanism for cations. The complete separation of the anions and cations was achieved in 5 min by elution with 15 mM tartaric acid-2.5 mM 18-crown-6 at a flow-rate of 1.5 ml/min. Detection limits at S/N=3 ranged from 0.36 to 0.68 microM for anions and 0.63-0.99 microM for cations. This method has been applied to the simultaneous determination of anions and cations in several environmental waters with satisfactory results.  相似文献   

8.
《Electrophoresis》2018,39(14):1802-1807
An improved method for the concurrent determination and separation of cations and anions by microchip electrophoresis with capacitively coupled contactless conductivity detection (ME‐C4D) is described. Two kinds of microchip structures were designed. The first microchip has a long bent separation channel. And for the defects of the first microchip, the second microchip with a Y‐type separation channel has been proposed. The background electrolyte (BGE) composed of 20 mm His/MES and 0.01 mm CTAB was optimized for inhibiting the electroosmotic flow (EOF). Due to the low electroosmotic flow, the cations and anions migrate in opposite directions and can be separated from each other. With the precisely controlled high‐voltage, cations and anions can be migrated in microchannels according to our requirements and sequentially detected by a C4D detector built in‐house. Samples containing K+, Na+, Li+, Cl, F and PO43− were analyzed simultaneously in a single run (within 140 s) by both methods. The reproducibility obtained by both methods remained below 5% for migration time and within 3.5–9.1% for peak areas. The proposed concurrent determination methods are inexpensive, simple, fast, ease of operation, high degree of integration.  相似文献   

9.
Conductivity detection is applied to ion-exchange capillary electrochromatography (IE-CEC) with a packed stationary phase, using a capacitively coupled contactless conductivity detector with detection occurring through the packed bed. Columns were packed with a polymeric latex-agglomerate anion-exchanger (Dionex AS9-SC). A systematic approach was used to determine suitable eluants for IE-CEC separations using simultaneous indirect UV and direct conductivity detection. Salicylate and p-toluenesulfonate were identified as potential eluant competing anions having sufficient eluotropic strength to induce changes in separation selectivity, but salicylate was found to be unsuitable with regard to baseline stability. It was also found for both indirect UV and direct conductivity detection that homogenous column packing was imperative, and monitoring of the baseline could be used to assess the homogeneity of the packed bed. Using a p-toluenesulfonate eluant, the separation of eight common anions was achieved in 2.5 min. Direct conductivity detection was found to be superior to indirect UV detection with regard to both baseline stability and detection sensitivity with detection limits of 4-25 microg/L being obtained. However, the calibration for each anion was not linear over more than one order of magnitude. When using conductivity detection, the concentration of the eluant could be varied over a wider range (2.5-50 mM p-toluenesulfonate) than was the case with indirect UV detection (2.5-10 mM), thereby allowing greater changes in separation selectivity to be achieved. By varying the concentration of p-toluenesulfonate in the eluant, the separation selectivity could be manipulated from being predominantly ion-exchange in nature (2.5 mM) to predominantly electrophoretic in nature (50 mM).  相似文献   

10.
Capillary electrophoresis was used for separation and quantitation of several inorganic anions in the drainage and surface water samples from the region with extensive use of fertilisers. Baseline separation of 13 small anions including nitrite and nitrate up to the concentrations of 100 mg/l was achieved in less than 5 min. The electrolyte consisted of 3 mM K2CrO4, 30 microM cetyltrimethylammonium bromide and 3 mM boric acid at pH 8. The method yielded precisions of 1.8-7.2% (RSD, n = 10) and detection limits from 4 micrograms/l (Cl-) up to 500 micrograms/l (citrate). The results of the CE method were compared to ion chromatography using water-acetonitrile (86:14) at pH 8.6 adjusted with NaOH as the mobile phase and consistent results were obtained.  相似文献   

11.
The system comprises two flow injection-capillary electrophoresis interfaces into which the opposite ends of the separation capillary are inserted. The electrolyte solution flows through both interfaces by use of hydrostatic pressure. The injection of the samples into the electrolyte flow is accomplished by a rotary-type chromatographic valve at the grounded side and by a pinch-valve injector at the high-voltage side that provides sufficient isolation from the high electric field. The system allows a fully automated dual-injection sequence of samples from both capillary ends and simultaneous electrophoretic separation of anions and cations in the samples. The analytes are detected by a high-voltage contactless conductometric detector positioned approximately in the middle of the separation capillary. The parameters of the system were evaluated. The repeatability of the flow injection-capillary electrophoresis system for the simultaneous determination of anions and cations was evaluated for ten consecutive injections and relative standard deviation (RSD) values for peak areas were better than 1.0%. The sample throughput for total ionic analysis was estimated to be 25 samples per hour. The system was used for automated simultaneous analysis of anions and cations in various real samples. Using a short separation capillary, rapid total ionic analysis in less then 1 min is demonstrated.  相似文献   

12.
A new capillary electrophoretic approach for simultaneous separation of fast anions and cations is demonstrated. Indirect UV detection at 214 nm in conjunction with electromigration sampling from both ends of the capillary was developed. Two electrolyte systems based on imidazole-nitrate and copper(II)-ethylenediamine-nitrate were investigated for the simultaneous separation of chloride, sulphate, hydrocarbonate, potassium, ammonium, calcium, sodium and magnesium ions. Experimental parameters that were evaluated included a nature of UV chromophore, pH of electrolyte, a nature of complexing agent. The method permits the excellent separation of three anions and five cations in only 4 min using electrolyte system containing 2.5 mmol l−1 Cu(NO3)2, 5 mmol l−1 ethylenediamine and 1 mmol l−1 fumaric acid at pH 8.5 adjusted with tetraethylammonium hydroxide.  相似文献   

13.
A new approach for simultaneous separation of small inorganic and organic anions and metal cations by capillary electrophoresis is demonstrated. Metal cations in the sample are transformed into their chelates with EDTA and are separated together with the anions using an anionic separation mode. Simultaneous separation of 19 common anions and cations was achieved in about 6 min with the electrolyte containing 5 mM K2CrO4, 3 mM boric acid, 35 microM cetyltrimethylammonium bromide and 12 microM EDTA at pH 8. Limits of detection (s/n = 3) were in the range from 4 ppb for Cl- up to 1250 ppb for Cu-EDTA and RSDs of peak areas ranged from 1.4% for Cl- up to 8.5% for Mn-EDTA chelate. The practical applicability of the method was demonstrated on the analysis of anions and cations in various water samples.  相似文献   

14.
Kubán P  Kubán P  Kubán V 《Electrophoresis》2002,23(21):3725-3734
Simultaneous separation of up to 22 inorganic and organic anions, alkali, alkaline earth and transition metal cations was achieved in less than 3 min in the capillary electrophoresis system with contactless conductometric detector. The sample was injected from both capillary ends (dual opposite end injection) and anionic and cationic species were detected in the center of the separation capillary. The parameters of the separation electrolyte, such as pH, concentration of the electrolyte, concentration of complexing agents and concentration of 18-crown-6 were studied. Best results were achieved with electrolytes consisting of 8 mM L-histidine, 2.8 mM 2-hydroxyisobutyric acid, 0.32 mM 18-crown-6 at pH 4.25 or 9 mM L-histidine, 4.6 mM lactic acid, 0.38 mM 18-crown-6 at pH 4.25. Other electrolytes containing complexing agents such as malic or tartaric acid at various concentrations could also be used. The detection limits achieved for most cations and anions were 7.5 - 62 micro gL(-1) except for Ba2+ (90 micro gL(-1)), Cd 2+, Cr 3+ and F- (125 micro gL(-1)), and fumarate (250 micro gL(-1)). The repeatability of migration times and peak areas was better than 0.4% and 5.9%, respectively. The developed method was applied for analysis of real samples, such as tap, rain, drainage and surface water samples, plant exudates, plant extracts and ore leachates.  相似文献   

15.
A new method for the simultaneous determination of anions (sulfate, nitrate, and chloride) and cations (sodium, ammonium, potassium, magnesium, and calcium) in acid rain waters was investigated using high-performance ion-exclusion/cation-exchange chromatography with conductimetric detection on a separation column packed with a polymethacrylate-based weakly acidic cation-exchange resin in the hydrogen-form and an eluent comprising 1.5 mM sulfosalicylic acid–6 mM 18-crown-6 at pH 2.6, operated at 1.5 ml/min. Effective separation and highly sensitive conductimetric detection for the anions and the cations was achieved in about 14 min. Since the ionic balance (equivalents of anions/equivalents of cations) of acid rain waters of different pH (4.40–4.67) ranged from 0.97 to 0.94, evaluation of the water quality of acid rain was possible. This method was successfully applied to the simultaneous determination of the anions and the cations in acid rain transported from mainland China and North Korea to central Japan monitored by a meteorological satellite data analyzer.  相似文献   

16.
Hopper KG  Leclair H  McCord BR 《Talanta》2005,67(2):304-312
A novel electrolyte has been developed for the simultaneous separation of cations and anions in low explosive residue by capillary electrophoresis. This electrolyte contains 15 mM α-hydroxyisobutyric acid (HIBA) as the buffer, 6 mM imidazole as the cation chromophore, 3 mM 1,3,6-naphthalenetrisulfonic acid (NTS) as the anion chromophore, 4 mM 18-crown-6 ether as a cation selectivity modifier, and 5% (v/v) acetonitrile as an organic modifier. The pH was adjusted to 6.5 using tetramethylammonium hydroxide (TMAOH), an electroosmotic flow modifier. The method was optimized by varying the concentrations of α-HIBA, imidazole, and 1,3,6-NTS at three different pH values. The results provided a simultaneous indirect photometric analysis of both anions and cations with detection limits ranging from 0.5 to 5 ppm for anions and from 10 to 15 ppm for cations with a total run time of under 7 min. The method was then applied to the analysis of Pyrodex® RS and black powder, as well as several smokeless powders. The results obtained were consistent with previously reported results for separate anion and cation analysis and provide a faster, more complete analysis of each sample in a single chromatographic run.  相似文献   

17.
Wang J  Chen G  Muck A  Collins GE 《Electrophoresis》2003,24(21):3728-3734
A novel dual-injection poly(methylmethacrylate) (PMMA) microchip electrophoretic system has been designed and fabricated for simultaneous measurements of anions and cations using a single channel and detection device. It consists of two sample reservoirs, on both sides of a common separation channel. Anions and cations can be simultaneously electrokinetically injected into both ends of the separation channel. Due to lower electroosmotic flow in polymer channels compared to glass ones, the cations and anions migrate in opposite directions and can be separated from each other and detected using a movable contactless conductivity detector (MCCD) positioned around the center of the separation channel. The effects of the detector position and of the separation voltage on the response and resolution have been studied and optimized for simultaneous determination of six low-energy explosive-related ions, including ammonium, methyl ammonium, sodium, chloride, nitrate, and perchlorate in a single analytical run (of ca. 3 min). Simultaneous detection of nerve-agent degradation products along with explosive-related anions and cations is also demonstrated. The versatile system can also be used for separately measuring anions or cations. The attractive behavior of the dual-opposite injection microchip offers great promise for a wide range of applications, including "total ion analysis" of various samples.  相似文献   

18.
利用间接紫外毛细管区带电泳方法完成了对爆炸残留物中7种无机离子(K+,NH+4,NO-2,NO-3,SO2-4,ClO-3,ClO-4)的分离检测。阳离子测定采用的缓冲体系为10 mmol/L吡啶(pH 4.5)-3 mmol/L冠醚,K+和NH+4在2.6 min内达到基线分离,检出限分别为0.25 mg/L和0.10 mg/L(S/N=3)。阴离子测定采用的缓冲体系为40 mmol/L硼酸-1.8 mmol/L重铬酸钾-2 mmol/L硼酸钠(pH 8.6),氢氧化四甲铵为电渗流改性剂,5种阴离子在4.6 min内达到基线分离,检出限为0.10~1.85 mg/L。该方法已成功地应用于实际爆炸物样品种类的判定分析,取得了很好的结果。  相似文献   

19.
In this report, a new approach for the fast determination of hydrazine compounds (hy) in complex matrices is presented. The experimental protocol is based on poly(methylmethacrylate) (PMMA) microchip separations with contactless conductivity detection using a compact portable device, which integrates all separation and detection components. Three hy (hydrozine (Hy), methylhydrazine (MH), and 1,1-dimethylhydrazine (UDMH)) were separated within < 30 s at a separation voltage of 3.8 kV using a L(-)-histidine/2-(N-morpholinoethanesulfonic acid) (His/MES) buffer (25:50 mM, pH 5.87). The contactless conductivity detection enables detection limits for Hy, MH, and UDMH of 11.9, 35.5, and 337.8 ng/mL, respectively, with linear concentration dependence up to 10 μg/mL. In complex matrices such as soil samples or river water, interferences were eliminated by implementing ultrasound-assisted headspace single-drop microextraction of hy under strongly alkaline conditions, using an aqueous drop of His/MES buffer as the extractant phase. The incorporation of this miniaturized sample preparation step led to improved limits of detection for Hy, MH, and UDMH of 6.5, 15.3, and 11.4 ng/mL, respectively. The overall protocol demonstrates a promising approach for interfacing chip electrophoresis with real-world applications.  相似文献   

20.
利用间接紫外毛细管区带电泳方法完成了对爆炸残留物中7种无机离子(K+,NH+4,NO-2,NO-3,SO2-4,ClO-3,ClO-4)的分离检测。阳离子测定采用的缓冲体系为10 mmol/L吡啶(pH 4.5)-3 mmol/L冠醚,K+和NH+4在2.6 min内达到基线分离,检出限分别为0.25 mg/L和0.10 mg/L(S/N=3)。阴离子测定采用的缓冲体系为40 mmol/L硼酸-1.8 mmol/L重铬酸钾-2 mmol/L硼酸钠(pH 8.6),氢氧化四甲铵为电渗流改性剂,5种阴离子在4.6 min内达到基线分离,检出限为0.10~1.85 mg/L。该方法已成功地应用于实际爆炸物样品种类的判定分析,取得了很好的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号