首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
O. Schäf 《Ionics》1996,2(3-4):266-273
Alkali-ion conducting glasses/glass ceramics of the system Me2O-A12O3-SiO2 (Me=Li, Na) were applied as solid electrolytes in potentiometric gas sensors to detect CO2 in the presence of O2 at increased temperatures. The corresponding Me-Carbonates were utilized as auxiliary electrodes. Sensors using the direct Au-glass contact as a kind of reference electrode (type I), as well as symmetrical sensors with carbonate phase at the reference and measuring electrode (type II - for comparative measurements) were manufactured. By applying Au as electrode metal, the theoretically expected EMF difference and the observed EMF difference of both sensor types agree quite well with the expected values according to the Nernst equation between 500 and 600 °C (over four orders of magnitude of CO2 partial pressure (10−5 – 10−1 bar) at constant O2 partial pressure (2.1×10−1 bar)). A long time stability of 120 days for sensors of type I with Li glasses has been observed, although evaporation of carbonate phase (Li2CO3) was detected under the conditions of sensor application. Sensors of type I (with Li2CO3) show thermodynamically unexpected cross-sensitivities to H2O. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

2.
The perovskite structured material LaGaO3 doped with 10 mol-% strontium and 20 mol-% magnesium was prepared by two different wet-chemical synthesis routes. The total conductivity was measured in air and under an oxygen partial pressure of 10−20 bar. There was a decrease by 10 % in 4 days when the atmosphere was changed from air to 10−20 bar. This process is reversible. Hebb-Wagner measurements resulted in values for the electronic minority charge carrier conductivities in pure oxygen of log σh [S/cm]=−4.02 and log σe [S/cm]=−15.5 for the holes and electrons, respectively, at 600 °C. In the partial pressure range 10−3 bar≤p(O2)≤1 bar, a slope of +1/4 was observed for d(log (σh)) / d(log (p(O2)) at T=600, 650 and 700 °C. That is in agreement with the assumption of a large number of oxygen vacancies. The diffusion coefficient of the holes was evaluated from the relaxation curves to be 1.1*10−7 cm2/s at 600 °C. Degradation effects were observed under highly reducing conditions which are attributed to the formation of gallium-platinum alloys and the loss of gallium oxide if O2 is available in the gas phase. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

3.
We have measured the UV absorption spectra of photothermorefractive glasses of the system Na2O-ZnO-Al2O3-NaF-SiO2 doped by cerium oxide in the range of (2.8–5.0) × 104 cm−1 (360–200 nm). The spectra have been processed by the method of dispersion analysis based on the analytical convolution model for the complex dielectric function of glasses. We show that the absorption band centered at 3.3 × 104 cm−1 (∼303 nm) that is attributed to the transition 2F 5/2 → 5d in the Ce3+ ion, is an envelope of three spectral components. The broad absorption range (3.5–4.7) × 104 cm−1 (200–270 nm) that is commonly interpreted as a charge transfer band of the Ce(IV) valence state, is an envelope of at least three spectral components.  相似文献   

4.
To investigate the influence of cation mobility variation due to the mixed glass former effect, 0.45Li2O-(0.55 − x) P2O5x B2O3 glasses (0 ≤; x ≤ 0.55) are studied keeping the molar ratio of Li2O/(P2O5 + B2O3) constant. Addition of B2O3 into lithium phosphate glasses increases the glass transition temperature (T g) and number density, decreases the molar volume, and generally renders the glasses more fragile. The glass system has been characterised experimentally by XRD, XPS and impedance studies and studied computationally by constant volume molecular dynamics (MD) simulations and bond valence (BV) method to identify the structural variation with increasing the B2O3 content, its consequence for Li+ ion mobility, as well as the distribution of bridging and non-bridging oxygen atoms. These studies indicate the increase of P-O-B bonds (up to Y = [B2O3]/([B2O3] + [P2O5]) ≈ 0.5 and B-O-B bonds, as well as the decrease of P-O-P bonds and non-bridging oxygens (NBOs) with rising B2O3 content. The system with Y ≈ 0.5 exhibits maximum ionic conductivity, 1.0 × 10−7 S cm−1, with activation energy 0.63 V. Findings are rationalised by a model of structure evolution with varying B2O3 content Y and an empirical model quantifying the effect of the various structural building blocks on the ionic conductivity in this mixed glass former system.  相似文献   

5.
Two lead-phosphate glass systems doped with both copper and vanadium ions in different ratios were studied by EPR (electron paramagnetic resonance) method. EPR spectra and parameters (g = 2.44, g = 2.08 andA = 117.6 · 10−4 cm−1) obtained for x(CuO · V2O5)(l−x)[2P2O5 · PbO] glasses withx ≤ 10 mol% suggest a tetrahedral (Td) coordination of Cu2+ ions and not a tetragonally elongated octahedron as has been assumed in previous works. The ground state of the paramagnetic electron is thed xy copper orbital with a 4pz contribution of 6%. For 20 ≤x ≤ 40 mol% a broad line (ΔB = 307 G) characteristic for clustered ions appears atg = 2.18. The V4+ ions are evidenced only in the spectra of x(CuO · 2V2O5)(1 −x)[2P2O5 · PbO] glasses and the resonance parameters suggest a pentacoordinated C4v local symmetry for these ions. The hyperfine structures characteristic for Cu2+ and V4+ ions disappear for 10 ≤x ≤ 40 mol% due to the mixed exchange Cu2+−V4+ pair formation in these glasses.  相似文献   

6.
T. Uma  K. Hattori  M. Nogami 《Ionics》2005,11(3-4):202-207
Nanostructures P2O5-Al2O3-SiO2 glasses were prepared by sol-gel method. The glasses were characterized by XRD, FTIR and TG/DTA methods. The average pore size of the glass was less than 3 nm as measured by N2 adsorption — desorption method. The thermal stability was measured as a function of decomposition temperature and weight loss calculations. Proton conductivities of all samples increased with an increase in relative humidity (40–90 %), indicating that continuous paths suitable for proton conduction were developed when glasses heat treated at 300 °C due to the adsorption of water. The temperature dependence of the conductivity for all compositions increases with increasing temperature in the range 30–90 °C with relative humidity 70 %. The overall conductivity was in the range 10−4–10−3 S/cm for compositions.  相似文献   

7.
A number of samples of silver phosphate glasses Ag2O−P2O5−Zn/CdX2 (X=Cl, Br or I) with 1, 5, 10 and 20 mol-% zinc or cadmium halides have been prepared. Control samples of undoped silver phosphate glasses were also prepared. These glasses were characterized by elemental analysis, X-ray diffraction, IR spectra, differential scanning calorimetry, transference number measurements and electrical conductivity studies. These glasses were found to be essentially ionic conductors. The undoped silver phosphate glass (Ag2O−P2O5) has a low σ value in comparison to the doped ones. The conductivity (σ) in the doped glasses increases substantially with increasing concentration of dopant salts Zn/or CdX2 and as the anions of the dopants are changed from Cl to I. It is found that the σ values of the ZnX2 doped glasses are slightly greater than those of the CdX2 doped ones, and the silver phosphate glasses doped with (20 mol-%) Zn/CdI2 yielded maximum conductivity. The results have been discussed and explained on the basis of changes in the structure of the glass matrix by the addition of dopant ions of different sizes, IR spectra and thermal studies.  相似文献   

8.
Water-soluble Mn2+-doped ZnS quantum dots (QDs) were prepared using mercaptoacetic acid as the stabilizer. The optical properties and structure features were characterized by X-Ray, absorption spectrum, IR spectrum and fluorescence spectrum. In pH 7.8 Tris-HCl buffer, the QDs emitted strong fluorescence peaked at 590 nm with excitation wavelength at 300 nm. The presence of sulfide anion resulted in the quenching of fluorescence and the intensity decrease was proportional to the S2− concentration. The linear range was from 2.5 × 10−6 to 3.8 × 10−5 mol L−1 with detection limit as 1.5 × 10−7 mol L−1. Most anions such as F, Cl, Br, I, CH3CO2 , ClO4 , CO3 2−, NO2 , NO3 , S2O3 2−, SO3 2− and SO4 2− did not interfere with the determination. Thus a highly selective assay was proposed and applied to the determination of S2− in discharged water with the recovery of ca. 103%.  相似文献   

9.
Absolute spectral luminosity from an O2–O2(a)-H2O gas flow formed by a chemical singlet oxygen generator was measured at 600–800 and 1230–1310 nm wavelengths. The results were used to determine the rate constants for O2(a, 0) + O2(a, 0) → O2(X, 0) + O2(X, 0) + hν (λ = 634 nm) and O2(a, 0) + O2(a, 0) → O2(X, 1) + O2(X, 0) + hν (λ = 703 nm) collision-induced emission ((6.72 ± 0.8) × 10−23 and (7.17 ± 0.8) × 10−23 cm3/s, respectively).  相似文献   

10.
CW CO2-laser annealing of arsenic implanted silicon was investigated in comparison with thermal annealing. Ion channeling, ellipsometry, and Hall effect measurements were performed to characterize the annealed layers and a correlation among the different methods was made. The laser annealing was done with power densities of 100 to 640 W cm−2 for 1 to 20 s. It was found that the lattice disorder produced during implantation can be completely annealed out by laser annealing with a power density of 500 W cm−2 and the arsenic atoms are brought on lattice sites up to 96±2%. The maximum sheet carrier concentration of 6×1015 cm−2 was obtained for 1×1016 cm−2 implantation after laser annealing, which was up to 33% higher than that after thermal annealing at 600 to 900°C for 30 min.  相似文献   

11.
Chemiluminescence (CL) of the reaction system tetracycline–H2O2–Fe(II)/(III)–Eu(III) was used for the determination of tetracycline hydrochloride in water, pharmaceutical preparations, and honey. The CL spectrum registered for this system shows emission bands typical of Eu(III) ions, with a maximum at λ ∼ 600 nm, corresponding to the electronic transitions of 5D07F1 and 5D07F2. A strong chemiluminescence intensity characteristic of europium(III) ions in the system tetracycline–H2O2–Fe(II)/(III)–Eu(III), as contrasted to the emission of the system tetracycline–H2O2–Fe(II)/(III) without Eu(III), proves that the Eu(III) ion plays the role of a chemiluminescence sensitizer, accompanying tetracycline oxidation in the Fenton system (H2O2–Fe(II)/(III)). A linear dependence was observed for the integrated CL light intensity on the tetracycline concentration in the range of 2 × 10−7 to 3 × 10−5 mol l−1 with the detection limit of 5 × 10−8 mol l−1 in aqueous solution.  相似文献   

12.
In the paper, a chemiluminescence (CL) system was developed based on the catalytical effect of diperiodatocuprate (III) (DPC) on the 1,10-phenanthroline (phen)/hydrogen peroxide (H2O2) in the presence of cetyltrimethylammonium bromide (CTAB). The effects of experimental conditions were investigated. Meanwhile the increase of CL intensity of the DPC/phen/H2O2/CTAB system is proportional to the concentration of phen in the range of low concentration. The linear range of the calibration curve is 5.0 × 10−9–1.0 × 10−6 mol L−1, and the corresponding detection limit is 1.9 × 10−9 mol L−1. The effects of phenolic compounds (PCs) on the system were investigated. Hydroquinone was used as an example to investigate the application of the CL system to the determination of PCs. The quenched CL intensity is linearly related to the logarithm of concentration of hydroquinone. The linear range of the calibration curve is 2.5 × 10−9–1.0 × 10−5 g mL−1, and the corresponding detection limit is 1.8 × 10−9 g mL−1. This phen and hydroquinone can be synchronously determined. The method was applied to the determination of hydroquinone in water samples and the recoveries were from 92% to 106%.  相似文献   

13.
Variable chain length di-urethane cross-linked poly(oxyethylene) (POE)/siloxane hybrid networks were prepared by application of a sol-gel strategy. These materials, designated as di-urethanesils (represented as d-Ut(Y′), where Y′ indicates the average molecular weight of the polymer segment), were doped with lithium triflate (LiCF3SO3). The two host hybrid matrices used, d-Ut(300) and d-Ut(600), incorporate POE chains with approximately 6 and 13 (OCH2CH2) repeat units, respectively. All the samples studied, with compositions ∞ > n ≥ 1 (where n is the molar ratio of (OCH2CH2) repeat units per Li+), are entirely amorphous. The di-urethanesils are thermally stable up to at least 200 °C. At room temperature the conductivity maxima of the d-Ut(300)- and d-Ut(600)-based di-urethanesil families are located at n = 1 (approximately 2.0 × 10−6 and 7.4 × 10−5 Scm−1, respectively). At about 100 °C, both these samples also exhibit the highest conductivity of the two electrolyte systems (approximately 1.6 × 10−4 and 1.0 × 10−3 Scm−1, respectively). The d-Ut(600)-based xerogel with n = 1 displays excellent redox stability.  相似文献   

14.
S. Shkerin  S. Primdal  M. Mogensen 《Ionics》2003,9(1-2):140-150
Gold electrodes with known contact geometries were studied using impedance spectroscopy. From these data it was possible to determine the specific polarisation conductivity per unit length of three-phase boundary (TPB). The values were found to be (3÷22)×10−4 S·cm−1 dependent on the electrode history in pure oxygen at 977 °C and 2×10−6 S·cm−1 at 977 °C in “pure” hydrogen (PO2=10−20 atm at 1001 °C). The results are compared with previous data obtained for platinum electrodes.  相似文献   

15.
The structural evolution of Cu60Zr20Ti20 bulk metallic glass during rolling at different strain rates and cryogenic temperature was investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy (HRTEM). It is revealed that the deformation-induced transformation is strongly dependent on the strain rate. At the lowest experimental strain rate of 1.0×10−4 s−1, no phase transformation occurs until the highest deformation degree reaches 95%. In a strain rate range of 5.0×10−4−5.0×10−2 s−1, phase separation occurs in a high deformation degree. As the strain rate reaches 5.0×10−1 s−1, phase separation and nanocrystallization concur. The critical deformation degree for occurrence of phase transformation decreases with the strain rate increasing. Supported by the National Natural Science Foundation of China (Grant No. 50471016)  相似文献   

16.
The neutron diffraction patterns have been analyzed for a layered single crystal and a powder of the γ-polytype of indium selenide in the temperature range 10–300 K. In the temperature range 10–50 K, the excitation of bending vibrations due to the charge density waves changes the phonon spectrum and gives rise to a negative thermal expansion in the plane of layers, i.e., αc = −2.2 × 10−6 K−1, which is characteristic of two-dimensional structures. The average (over the range T = 50–300 K) coefficients of thermal expansion along the principal crystallographic directions have been calculated: $ \bar \alpha _{ \bot c} $ \bar \alpha _{ \bot c} = 10.48 × 10−6 K−1 and $ \bar \alpha _{\parallel c} $ \bar \alpha _{\parallel c} = 12.97 × 10−6 K−1, which agree with the X-ray diffraction data previously obtained by the authors at T = 290 K.  相似文献   

17.
A novel and simple fluorescence enhancement method for selective pyrophosphate(PPi) sensing was proposed based on a 1:1 metal complex formation between bis(8-hydroxy quinoline-5-solphonat) chloride aluminum(III) (Al(QS)2Cl), (L) and PPi in aqueous solution. The linear response range covers a concentration range of 1.6 × 10−7 to 1.0 × 10−5 mol/L of PPi and the detection limit of 2.3 × 10−8 mol/L. The association constant of L-PPi complex was calculated 2.6 × 105 L/mol. L was found to show selectively and sensitively fluorescence enhancement toward PPi over than I3-, NO3-, CN, CO32−, Br, Cl, F, H2PO4 and SO42−, which was attributed to higher stability of inorganic complex between pyrophosphate and L.  相似文献   

18.
R Bharati  R Shanker  R A Singh 《Pramana》1980,14(6):449-454
The temperature dependence of the electrical conductivity, thermoelectric power and dielectric constant of the antiferromagnetic CuWO4 have been studied in the temperature range 300–1000 K. The conductivity results can be summarised by the equations σI=6.31 × 10−3 exp (−0.29 eV/kT) ohm−1 cm−1 in the temperature range 300–600 K and σII=3.16 × 105 exp (−1.48 eV/kT) ohm−1 cm−1 between 600 K and 1000 K. The thermoelectric power can be expressed byθ=[− 1.25 (103/T) + 3.9] mV/K. Initially dielectric constant increases slowly but for high temperatures its increase is fast.  相似文献   

19.
EPR investigation on xV2O5 · (100 −x)[2P2O5 · Na2O] and xV2O5 · (100 −x)[P2O5 · mNa2O] (m = 1.5 and 2) glass systems was performed. The changes observed in the EPR spectra of xV2O5× (100 −x)[2P2O5 · Na2O] glasses with increasing content of vanadium oxide are explained supposing that these spectra consist of two superposed EPR signals, one with hyperfine structure typical for isolated ions and another one consisting of a broad line without hyperfine structure characteristic for clustered ions. The clustered V4+ ions are not evidenced at low V2O5 contents (x = 5 mol%). The EPR spectra of xV2O5 · (100 −x)[P2O5 · mNa2O] glasses indicate a superposition of two or three hyperfine structures attributed to nonequivalent VO2+ centers. Spin Hamiltonian parameters (g, A), dipolar hyperfine coupling parameter (P) and Fermi contact interaction term (K) have been evaluated. The ratio between the number of clustered and isolated ions was also determined.  相似文献   

20.
In the reducing atmosphere of the SOFC anode at operating temperatures of 800 °C and above Nb2TiO7 is reduced to Nb1.33Ti0.67O4. This material displays very high electronic conductivity of >100 Scm−1, suitable for use in such applications as a current collector. It has a low thermal expansion coefficient of 3 × 10−6 K−1, however, which may cause problems due to mismatch with other SOFC components, e.g. YSZ. Doping with Fe2O3 successfully increased the thermal expansion to a maximum of 6 × 10−6 K−1. A conductivity of 140 Scm−1 at 900 °C in dry 5% H2/Ar, with an activation energy of 0.18 eV, was achieved for the Nb1.344Ti0.642Fe0.014O4, making it suitable for the use as a current collector. Conductivity runs in wet 5%H2/Ar showed lower conductivities of 15–18 Scm−1 and lower activation energies of 0.08 − 0.09 eV. Single cell tests of Nb1.33Ti0.67O4 showed power outputs of 5.5 − 7.2 mW·cm−2 at 850 °C, lower than for Ni with 150 − 200 mW·cm−2 at 850 °C, however, this material displayed much better stability at high temperatures than Ni. Paper presented at the 9th EuroConference on Ionics, Ixia, Rhodes, Greece, Sept. 15 – 21, 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号